
June 2000 Volume:5 Issue:6

The World’s Leading Java Resource

TM

Java & Robotics: How to Control a Robot Darrel Riekhof

Over the Internet Simple robotics with java servlets Keith Fligg 34

Feature: SQL Embedded in Java PART 2 Ekkehard Rohwedder
Continuing our miniseries on SQLJ 42

Java Utilities: A Java File Search Utility Pat Paternostro
It’s functional as it stands – and you can add to it 54

Feature: Using the JMS with EJBs Scott Grant
Bring these two powerful enterprise technologies together 58

Feature: Applying Patterns to JDBC Christian Thilmany

Development A real-world database scenario 80

Building EJBs with VisualAge for Java Lucy Barnhill, Angus McIntyre
Eliminate the frustration of developing EJBs by hand & Rob Stevenson 98

Feature: Self-Contained Client Applets Thomas Czernik

Using Swing Create a GUI outside the browser’s frame Rolf Kamp 108

Feature: Bean-Managed Persistence Daniel O’Connor

Using a Proxy List Saving dependent objects in a relational database 126

Feature: Extending Your Applications with BSF Rick Hightower
BSF provides a universal scripting platform for Java 148

SYS-CON
MEDIA

Java COM

From the Editor
by Sean Rhody pg. 7

Guest Editorials
by Richard Soley pg. 8

by Jeremy Allaire pg. 10
by George Paolini pg. 12
by Alex Roedling pg. 14

E-Java
by Ajit Sagar pg. 48

IMHO
by Bruce Scott pg. 210

Straight Talking
by Alan Williamson pg. 30

EJB Home
by Jason Westra pg. 118

Corba Corner
by Todd Scallan pg. 138

Programming Techniques
by Gene Callahan &
Rob Dodson pg. 92

Announcing...
Coming

June 25-28, 2000

September 24-27, 2000

Interview
Alan Armstrong of KL Group

pg. 160

Jim Milbery 16

CAREER OPPORTUNITIES SECTIONCD
INSIDE!

FREE
CD!WEBLOGIC

SERVER RELEASE 5.1

BUILDING E-COMMERCE
APPLICATIONS USING BUSINESS

COMPONENTSFOR JAVA
INSIDE

CA

REER OPPORTUNITIES

SECTION

HOTJAVAJOB$

HOTJAVAJOB$

PAGE 177

Java COM

2 JUNE 2000

Progress Software
www.sonicmq.com/ad1.htm

3JUNE 2000

Java COM

Protoview
www.protoview.com

Java COM

4 JUNE 2000

Bluestone
Software
www.bluestone.com

F R O M T H E E D I T O R
sean rhody 7

G U E S T E D I T O R I A L S
richard soley 8
jeremy allaire 10
george paolini 12
alex roedling 14

S T R A I G H T T A L K I N G
alan williamson 30

J A V A & R O B O T I C S
darrel riekhof & keith fligg 34

E - J A V A
ajit sagar 48

J A V A U T I L I T I E S
by pat paternostro 54

J A V A & O R A C L E
by samir shah 74

PROGRAMMING TECHNIQUES
by gene callahan
& rob dodson 92

V I S U A L A G E R E P O S I T O R Y
by lucy s. barnhill, angus

mcintyre & rob stevenson 98

E J B H O M E
by jason westra 118

C O R B A C O R N E R
by todd scallan 138

J D J N E W S
158

I N T E R V I E W
with alan armstrong

of KL Group 160

I M H O
by bruce scott 210

C O V E R S T O R Y

Building E-Commerce Applications
Consruct a complete application with a JSP

F E A T U R E

Using the JMS with EJBs
Bring these two powerful enterprise technologies together

F E A T U R E

Self-Contained Client Applets Using Swing
Create a GUI ouside the browser’s frame

F E A T U R E

Extending Your Applications with BSF
BSF provides a universal scripting platform for Java

F E A T U R E

SQL Embedded in Java: Mixing Java & SQL: Part 2
SQLJ, the standard for embedding database SQL statements

V O L U M E : 5 I S S U E : 6 J U N E 2 0 0 0

5JUNE 2000

Java COM

No
Magic
www.magic-

draw.com

F E A T U R E

Applying Patterns to JDBC Development
A real-world database scenario

F E A T U R E

Bean-Managed Persistence Using a Proxy List
Saving dependent objects in a relational database

jim milbery

16

ekkehard rohwedder

42
scott grant

58
christian thilmany

80

thomas czernik
& rolf kamp

108
daniel o’connor

126
rick hightower

148

Java COM

6 JUNE 2000

TogetherSoft
Corporation
www.togethersoft.com

G U E S T E D I T O R I A L

O
ne of the most delightful parts of my job is to
travel the world, sharing the Object Manage-
ment Group’s vision of integrated, interopera-
ble systems with varying sizes of audience –
from as few as 10 people to as many as 10,000
– in every corner of the planet.

While the travel can sometimes be grueling, it’s worth it when I get
a question or two after a speech that shows that someone has expe-
rienced the epiphany I myself had in 1989, when I realized that no
business can be automated by software systems until the individual
applications that automate individual processes are integrated.

There are a few favorite questions that I ask at these events in
order to evoke audience participation. My favorite by far is, “What’s
the definition of a legacy system?” Unfortunately audiences are get-
ting smarter – or perhaps they’ve just heard me speak before! But
until recently most of the answers were in the set:
• “Something written in COBOL (or Jovial or PL/I)”
• “Something that runs on an IBM 370 (or IBM 360 or Burroughs

machine)”
• “Something that nobody knows how to use anymore”
• “Something for which the source code has been lost”
• “Something written by programmers long dead and forgotten”

I certainly understand those last two. I once
had to work with a million-line FORTRAN pro-
gram, the source code for which had been lost
and the programmers of which had passed away!
My own definition, however, is much simpler: a
legacy system is a system that runs.

Whether it was written in IBM Assembler F in
1963 and is currently being run in a 1401 emulator
on a 360 emulator on a 370 emulator on a Hitachi
mainframe or written yesterday morning in Java, if
it is deployed now, it is a legacy system. Any future
software development that we must do in the enter-
prise must either integrate with that legacy, or
replace it – and we all know that software doesn’t die,
so we are left with only one choice: integration.

I don’t think anybody is surprised so far – certain-
ly, as the chairman of a consortium focused entirely
on standards for integrating systems, I am not sur-
prised. Instead, the continuing surprise for me is the way our indus-
try responds to this legacy integration conundrum. That response has
been, historically, and apparently will continue to be in the future, the
continuous and uninterrupted introduction of silver bullets designed
to slay vampires (complex application integration problems).

Since the OMG was founded, these bullets have included C++, Java,
Enterprise JavaBeans, OLE/ActiveX/COM/DCOM/COM+/DNA and
now XML. (I have bad news for you: XML isn’t the universal data inter-
change format; it’s yet another universal data interchange format.) Each
of these previous silver bullets has been another legacy to deal with
when the next bullet whizzed by, and this will continue to be true.

Oh yes, another technology touted as universal, a source of homo-
geneity to cast out the heterogeneity of the world is…CORBA, from
the Object Management Group. What makes us any different?

The difference is that CORBA is not itself homogeneous. The OMG
has always focused on bridging diverse systems and CORBA has
changed in dramatic ways over the years to fulfill that vision. CORBA
now includes specifications to integrate directly with such dissimilar
languages as C, C++, Java, COBOL, Ada, Smalltalk and Lisp; to inte-
grate seamlessly with Microsoft COM and the Java Platform; and to
seamlessly compose components with Enterprise JavaBeans and
Microsoft MTS components.

Furthermore, as the industry has moved to more structured devel-
opment techniques and practices, OMG has moved with it. The
OMG’s Unified Modeling Language is a universally supported meta-
model and notation that has unified the industry around a single
standard, a standard that includes (among other things) support for
metadata repositories, XML-based repository integration, common
data warehouse standards for database integration, and mappings to
CORBA and other technologies. Again, this allows integration based
on the legacy of not only programming artifacts (code), but even
abstract designs.

Furthermore, the OMG has moved
rapidly in the past three years to build on
these infrastructure successes and the open,
neutral OMG consensus process by publish-
ing standards in medical systems interoper-
ability, standardized workflow processing,
product data management integration,
telecommunications systems convergence
and many other areas. Did you know that
OMG has published standards for air traf-
fic control? How about for human genome
research?

All of this activity is structured around
the unceasing need for integration. The
current spate of enterprise application
integration solutions – another new
magic bullet – finds us in the same situa-
tion when Company A (which had used

EAI tool X) merges with Company B (which
had used EAI tool Y). Suddenly it’s the integration tools themselves
that need integrating!

The search for silver bullets in our industry will never cease. Per-
haps it shouldn’t – maybe someday we’ll really find one. In the mean-
time, after the silver bullet hits a brick wall, somebody has to pick it
up and integrate it with the other legacies. Eight hundred companies
now achieve that necessary interoperability through the open, neu-
tral OMG process – we’d love to have you participate!

AUTHOR BIO
Richard Soley is chairman and CEO of the Object Management Group.

Today’s Silver Bullet Is Tomorrow’s Legacy
WRITTEN BY RICHARD SOLEY

Addressing the legacy integration conundrum

Java COM

8 JUNE 2000

9JUNE 2000

Java COM

WebGain
www.webgain.com

G U E S T E D I T O R I A L

B
y most people’s estimate, it’s the fifth anniversary
of Java. Five years ago, with Netscape in tow, Sun
unveiled Java, declaring that the Java program-
ming language would be the next Web revolu-
tion. At the time HotJava was the “killer app” for
Java; more a proof of

concept than a competitive browser platform,
it demonstrated that there could be more to
the Web than plain old HTML

Within a year all the major browser plat-
forms included a 1.0 version of the Java Run-
time and applets were considered the next
big thing after plug-ins. Both, it turned out,
were pretty much useless for e-commerce
and interactive Web sites: all the action was
on the server. Java was declared dead by
many industry pundits and its role on the
client side of the Internet equation dimin-
ished massively.

Sun and other vendors began accordingly
to shift their attention server-side, since
computing application servers were becom-
ing the new operating platforms for the
Internet. After three years this effort has
emerged as J2EE, arguably one of the fastest-
growing enterprise computing architectures
in history.

Why is all of this so important? It matters because today, while
Java is on the threshold of being established as a new-breed operat-
ing platform for the Internet, many customers and developers still
understand it, narrowly, as an Internet programming language.

With the metamorphosis of Java from cool Internet programming
environment to foundation platform for Internet applications comes
a need to rearticulate the role of Java the platform versus Java the
language. As Java becomes more strategic to the industry overall, the
transformation also raises fundamental questions for customers and
vendors about the openness of the platform.

If Java is to the Internet environment what Windows was to the PC
environment, and if by definition foundation Internet technologies
require open architectures, then we’re faced with a long-term ques-

tion about the overall openness of Java. In the Internet environment,
there are really four major categories of technology, each with their
own degree of openness:
1. Open standards-based technologies: The vast majority of tech-
nologies running the Internet are based on open standards created

by vendor-driven standards bodies such as the
IETF, W3C, ISO and ECMA. These include TCP/IP,
HTTP, HTML, XML, RARP, X.509 and hundreds of
other core technologies. These standards still rely
on vendor or community implementations.
2. Open technologies defined by process and
license: A vast amount of Internet technology in
place today is literally and truly open in legal
terms, typically as defined by the General Public
License (GPL) or a BSD-style license. These tech-
nologies include operating systems (Linux), Web
servers (Apache) and application development
and runtime technologies (Perl, PHP, Python,
C/C++, and so on).
3. Open technologies defined by process, but not
license: This includes vendor-controlled tech-
nologies but with an open community process in
the evolution of those technologies. Great exam-
ples of this include Java or an older example such
as ODBC, driven by Microsoft. Nonetheless, in
both cases a single vendor ultimately owns and
controls the technology.

4. De facto standards with broad distribution: In many cases, com-
mercial success with a proprietary technology establishes a de facto
standard position for a vendor technology. Examples of this include
Microsoft ASP, Allaire ColdFusion, RealNetworks RealMedia and Macro-
media Flash.

Today Java as a platform is an open technology by process – but
not by license. With vendors and customers betting their future on
this platform, what’s the appropriate process, license and ultimate
ownership of this critical technology? I think this will become a
pressing question over the coming years.

—continued on page 28

Beyond Java:
The Metamorphosis of an Operating Platform

WRITTEN BY JEREMY ALLAIRE

Java COM

10 JUNE 2000

11JUNE 2000

Java COM

Microsoft
msdn.microsoft.com/training

G U E S T E D I T O R I A L

W
e live in a world of high anxiety. We’re
concerned about the competition,
fearful we’ll fall behind the curve, wor-
ried that making up lost ground might
prove impossible. So we hastily turn to
technology, which obligingly always
seems to have a solution. Well, at least
it says so in the marketing brochure….

But how much are things really changing? Are these advances
really so revolutionary? Or are they simply refinements on a few good
ideas?

We measure progress in the technology industry according to
speed, price, weight and ease of use. (Which doesn’t explain why,
when I go on the road, I now lug around 20 pounds of batteries and
transformers for my myriad devices and why I have no idea how to
get my Palm Pilot to talk via infrared to my PC.)

Every so often, however, progress
comes not in gradual increments, but
in a big, earthshaking blast: Apollo 11,
ARPANET, the Mac, the Web. As you
might have guessed, I put Java tech-
nology in this category.

Now, as revolutionary as Java tech-
nology is, I believe that when the his-
tory books are written, the process
we’re using for evolving the platform
will prove to be as revolutionary in its
own right.

When the Java platform was first
introduced in ’95, it was the equiva-
lent of Henry Ford building cars
before the roads existed. An incredible piece of technology with no
place to go. Fortunately, we realized early on that Java technology
was bigger than Sun, and that succeeding would mean involvement
of the entire industry: developers, IT professionals, software start-
ups and industry stalwarts.

The process for working with Sun on evolving the platform was
quite ad hoc and improvised at first. In many ways it had to be, given
how quickly things were changing during the first few years. The
industry – Sun, Java technology licensees, developers – built 80 new
programming interfaces to grow Java from a language and runtime
into a full-blown platform in that time.

By December 1998 we had formalized this methodology in what
is now known as the Java Community Process (JCP). We did more
than just document the process, however. We also relaxed a number
of restrictions, allowing companies other than Sun to take the lead
on creating new interfaces, and allowing anyone to join in these
efforts.

It’s a process that, while open to improvements, has worked enor-
mously well. To date, more than 65 new interfaces have been intro-

duced. These efforts, known as Java Specification Requests (JSRs), are
now in various phases of the six steps involved in openly evolving the
Java technology.

Those steps are a Proposal, Expert Group Formation, Participant
Draft, Public Draft, Final Release and Maintenance. More than 180
companies and individuals have signed up as participants in the JCP.
Many have taken on leadership roles, becoming specification leads
for nearly half of all JSRs. These leaders are responsible for three key
deliverables: a technology specification, a reference implementation
and a Compatibility Test Suite.

Specifications are detailed, written documents that outline the
technical attributes of an API. The reference implementation is a
working example of the specification that serves as proof of concept
– proof that the technology specifications can be implemented. The
Compatibility Test Suite is a collection of tests, tools and other
requirements used to certify that an implementation conforms to

both the applicable API specifications
and the reference implementation. It
helps to ensure consistent Java technol-
ogy implementations across various
platforms.

Is the JCP perfect? Not quite. It’s
clear that now, as businesses are bet-
ting not only their existence but also
their success on Java technology, they
are concerned that the process Sun
drives is open and equitable. Fair
enough. That’s why we’re exploring a
number of changes in JCP 2.0, due to
launch this summer. One change, for
instance, would be the formation of an

executive committee, which would include industry stakeholders
and would be responsible for approving the passage of technology
specifications and determining when a technology specification is
ready for public review.

There are surely many more ways to improve upon and refine the
JCP, and we’ll continue to work on it with your help. You can bet that
any changes we make will support our No. 1 objective: to provide Java
technology developers with a stable platform for rapid innovation.

I urge you to get involved in the evolution of the Java platform.
Just go to java.sun.com/jcp. It’s really that simple. We look forward to
working with you.

AUTHOR BIO
George Paolini and his team at Sun are responsible for ensuring the widespread adoption of Java, Jini
and other technologies, and work with partner companies and licensees to drive the community
process that evolves the technologies.

george.paolini@sun.com

Java COM

12 JUNE 2000

A Call to Action for the
Java Technology Community

WRITTEN BY GEORGE PAOLINI,VICE PRESIDENT, JAVA COMMUNITY DEVELOPMENT, SUN MICROSYSTEMS, INC.

13JUNE 2000

Java COM

WebVision
www.webvision.com

Java COM

14 JUNE 2000

G U E S T E D I T O R I A L

T
he e-commerce market opportunities in the B2B space are excep-
tionally greater than those in B2C. GartnerGroup, one of the lead-
ing analyst firms, predicts that B2B e-commerce will amount to
over $7 trillion by the year 2004. The interoperability and integra-
tion complexities are also multidimensional in comparison to

those in B2C space. Sean Rhody, JDJ editor-in-chief, touched on this
very topic in the March issue (Vol.5, Issue 3). Consumers have bene-
fited from the dot-com phenomenon in terms of cost savings, conve-
nience and automation. Buyers and sellers in the B2B space are after
those same cost-saving benefits to increase bottom-line profitability.

Rise of the Digital Marketplace
Recent developments have seen the rise of the digital market-

place, a centralized location where multiple buyers and sellers meet
and exchange goods, services and information. This centralized
approach eases the buying and selling of products in a fragmented
industry. Organizations aren’t quite sure how they’re going to partic-
ipate in an electronic marketplace, but they know they’ll have to. Pri-
marily, they fear they’ll lose their competitive advantage if they don’t.
But the benefits for all parties involved are tremendous.

Key Digital Marketplace Components
Digital marketplaces strive to be the business portals of the

future. Their goal is to attract as many buyers and sellers as possible
and provide them with the tools to exchange goods and services. Not
only must they enable e-commerce, but they must also foster com-
munication and speed the sales cycle for members to become more
profitable. Marketplaces typically make their money by taking a per-
centage of the transaction revenue; in the future however, market
makers will have to offer value-added services in order to grow their
revenue and gain customer loyalty.

Marketplaces address the following functions:
• Content: A catalog content management system enables suppliers

to offer their catalogs electronically, giving them a tremendous
reach into a much wider potential audience of buyers. For buyers,
a centralized location for purchasing goods allows them to find the
best price, quality, terms and conditions or any other key buying
criteria that may be important to them.

• Commerce: Although marketplaces typically service a unique
trading community and provide different levels of marketplace
functionality, they all share the common requirement of automat-
ing the exchange of information and transactions in a distributed
environment between buyers and suppliers.

• Community: Building a sense of community is essential to attract-
ing more buyers and suppliers to obtain critical mass. By provid-
ing the latest news, information and data, the marketplace will
encourage regular visits. Also, real-time collaboration between
trading partners significantly expedites the trading process.

• Services: Value-added service offerings will become the norm as
digital marketplaces battle for business loyalty and a comparative
advantage. The market maker has access to large amounts of
product, transaction and market data that will be invaluable for
trading partners to grow their business.

B2B Commerce Models Are Varied and Unique
There’s no doubt that the ubiquity of the Internet has created what

seem like endless opportunities and has resulted in some interesting

and creative business models. Thousands of marketplaces have
evolved, each with its own approach, implementing multiple revenue
models including auctions, reverse auctions, independent exchanges
and hubs. Forrester Research estimates that 75% of these marketplaces
will provide more than one transaction mechanism within two years.

Complex Products and Business Relationships
In the B2C e-commerce space, the product remains fairly static

and price becomes the differentiating factor. However, in the B2B
space the product and transaction variables are much more com-
plex. Products have multiple dimensions and origins, and an entire
list of quality specifications. Transactions have to incorporate many
variables, including payment terms and conditions, order status and
shipment confirmation. In addition, buyers may use a marketplace
to work solely with a group of preferred suppliers and to trade on
prenegotiated contract terms. The list continues to grow...

Interoperable Marketplaces
The rapid growth of the Internet has resulted in an uncoordinated

approach to the adoption of Internet business models, resulting in com-
plex integration and interconnectivity issues between trading partners.
The number of marketplaces is expected to reach 100,000 in the next
three to five years. The very trend that aims to centralize fragmented
markets will be threatened by fragmentation itself. Take the example of
ATM networks, which were forced to integrate with one another to serve
the needs of customers. Marketplaces will be required to do the same, so
market makers should plan accordingly. The eCo Framework from
CommerceNet offers an XML-based solution that enables businesses to
simply register their product and service offerings in order to participate
in a market without requiring them to change the way they do business.

Open, Standards-Based Infrastructure Solutions
To effectively support these numerous product attributes, com-

plex transactions, multiple e-commerce models, unique business
relationships and marketplace interoperability, a digital marketplace
must fundamentally be very flexible. Previous buy-and-sell–side
solutions were too rigid, took a long time to realize a return on
investment and couldn’t easily adapt to an organization’s business
processes. Market makers will look to open, standards-based solu-
tions to protect their investment and provide the flexibility to adapt
the marketplace to meet future e-business needs. Java, XML and
messaging-based middleware will be the enabling technologies to
effectively exchange data and information in real-time between
trading partners and their existing systems. In addtition, market
makers should look to the eCo Framework from CommerceNet to
empower marketplaces to interoperate with one another.

• • •
Digital marketplaces are rapidly on the rise and here to stay. To learn

more about them and how your organization can benefit either as a mar-
ket maker or trading partner, follow the following links: www.netmarket-
makers.com, http://eco.commerce.net and www.fiorano.com.

AUTHOR BIO
Alex Roedling is director of marketing at Fiorano Software, an e-businss infrastructure solutions
company. He holds an MBA from the Montery Institute of International Studies.

alexr@fiorano.com

Digital Marketplace Platform: Here Today, Flexible for Tomorrow
WRITTEN BY ALEX ROEDLING

15JUNE 2000

Java COM

Insignia Solutions
www.insignia.com/jeode

Java COM

16 JUNE 2000

J D J F E A T U R E

BUILDING E-COMMERCE
APPLICATIONS USING

BUSINESS COMPONENTS
FOR JAVA

WRITTEN BY JIM MILBERY

You can leverage the

power of an extensible

framework to construct

a complete application

with a JSP front end

BUILDING E-COMMERCE
APPLICATIONS USING

BUSINESS COMPONENTS
FOR JAVA

T
he fifth anniversary of the inaugural JavaOne conference

is upon us, and there can be little doubt that Java has had

a profound impact on the way that applications are

developed and deployed.

Over the past few years, Sun has continued to refine the Java specification,
culminating in the groundbreaking release of the Java 2 Enterprise Edition
(J2EE). Much of Sun’s effort has gone toward the establishment of consistent
application programming interfaces and technical infrastructures. The
promise of multiplatform interoperability is certainly a heady goal, but it’s a
goal that seems more attainable now than at any time in recent memory. The
combination of Enterprise JavaBeans, servlets and JavaServer Pages offers a
powerful platform on which to build applications – but it may not be enough.

The IT industry is undergoing some powerful shifts that are begin-
ning to garner press. The days of large, long-term projects lasting sever-
al years and with unlimited budgets – such as ERP implementations –
are fast fading. Instead, corporations are favoring short (90-day) devel-
opment efforts with near-term implementation goals. Large, complex
applications are being built using a series of smaller projects that can be
attacked in more realistic timeframes.

While this shift certainly improves the success-to-failure ratio of IT proj-
ects, it also requires developers to become much more disciplined about
standards. After all, subsequent phases of a project must be able to build off
the earlier phases in as seamless a fashion as possible. Corporations are find-
ing themselves faced with the task of integrating their code into other appli-
cations managed by their partners and customers. This integration often
involves the need to move applications to new platforms and environments.
The result of these trends is a “Write once, build quickly and deploy every-
where” (WOBQDE) strategy that’s quickly transforming the entire industry.

Many of the developers building these new applications will hail
from the fourth-generation language (4GL) camp. While the J2EE prod-
uct offers these developers a powerful platform for developing applica-
tions, it represents a fairly radical departure from the 4GL world. Java
itself is a much lower level language for developing applications than
traditional 4GL environments. Fourth-generation development environ-
ments (and languages) provide productivity improvements by handling
many routine tasks such as optimistic locking, data caching and appli-
cation deployment – freeing the developer to concentrate on business
logic. The downside to most 4GLs has been their proprietary nature;
developers needing to “go outside the bounds” of the language often find
themselves faced with a formidable task.

Herein lies the problem. Is it possible to build enterprise-class appli-
cations in an incremental fashion along 4GL timelines using the J2EE?
The answer just may lie with application frameworks.

Application frameworks are prebuilt libraries of core functionality
used as a basis for developing higher-level software. Most object-orient-
ed programmers tend to think of frameworks as nothing more than sets
of class libraries but, while it’s true they do generally include class
libraries, they also provide tools to capture something of the flow of the
business logic as well. While a class library that defines the attributes and
methods of a “customer” object is certainly useful, a true framework will
likely define how customers interact with other objects in the system.

The concept of frameworks isn’t new, and many consulting firms and
service organizations have developed their own custom frameworks in
the past for other programming languages. Having prebuilt blocks of
application logic available from project to project allowed these firms to
reuse development work across multiple client companies. Instead of re-
creating a solution for (say) order entry or error handling on a project-
by-project basis, they built a framework for such tasks and used this
framework in each individual application. With the popularity of the
J2EE it’s now possible to apply this same technique to the Java language.

Framework Definitions and Recommendations
There are no hard and fast rules as to what constitutes a framework.

In general, it should provide the skeleton of an application and will
either be horizontal or vertical in nature.

Horizontal frameworks provide a basic technical skeleton for opera-
tions such as:
• Locking (optimistic and pessimistic)
• Master/detail coordination
• Caching

Vertical frameworks on the other hand generally provide precooked
business objects that may or may not include a technical skeleton. A ver-
tical framework might include the following types of components:
• Inventory module
• Customer module
• Orders module

17JUNE 2000

Java COM

Java COM

18 JUNE 2000

Informix/ Cloudscape
www.cloudscape.com

Informix/ Cloudscape
www.cloudscape.com

19JUNE 2000

Java COM

Java COM

20 JUNE 2000

Horizontal frameworks provide the most flexibility. You can use the
basic framework to build yourself a set of customized objects that can
serve as your own “vertical” framework. Conversely, vertical frameworks
are extremely effective for business problems that match the content of
the framework. For example, if you need to build an inventory control
system, you might find that a precooked inventory framework is a good
way to jump-start your development effort. If you find yourself making
extensive modifications to the base vertical framework, however, a hori-
zontal model might be a better option – you can use a horizontal frame-
work to build your own vertical framework.

In either case, you’ll want to be able to modify the framework as nec-
essary and you’ll want to be able to upgrade the framework without
making manual modifications to production applications that have
been deployed using it. Let’s say that the framework includes some base
logic for caching data and that you use it to deliver your own order entry
application. Over time the vendor improves the caching techniques in
the framework. Ideally you’d want to be able to deploy the updated
framework without having to modify your production application. At a
bare minimum, you’d want to be able to have your specific modifications
persist through an upgrade to the framework.

Historically speaking, this is one of the basic flaws in most 4GLs that
can be addressed by a good Java-based framework. 4GLs provided pro-
ductivity through their own proprietary framework managed by the lan-
guage itself. While this generally made programmers more productive,
there were almost always some severe limitations that couldn’t be over-
come. Since the framework was proprietary, there was often no way to
modify or disengage it. With a Java-based framework it should be possi-
ble to overcome this problem. A good framework will allow you to over-
ride methods (or replace them) as necessary on a class-by-class basis.

It’s important that any framework be tightly integrated with your
development environment. While you’ll want to have flexibility in
deployment, it can be counterproductive for your programmers if
they’re required to “jump through hoops” to work with the framework.
It’s a double-edged sword: on the one hand, you’ll want to be able to use
the framework directly in your developer IDE because this will help you
to maximize programmer productivity; on the other hand, you don’t
necessarily want to see all of the low-level details of the framework when
you’re debugging or testing the application.

Above all, you’ll need the manner in which applications are deployed
with the framework to be flexible. Frameworks too tightly bound to a sin-
gle deployment methodology (or server) will cause headaches in the
long term. In today’s marketplace it’s important to be able to address two
critical server markets, EJB and CORBA. But while you may develop
applications that are strictly tied to either EJB or CORBA, there’s no guar-
antee that your business partners will follow the same model. Being able
to deploy your applications into either model from a single framework
can thus pay dividends down the road. You’ll also need to access your
framework objects from a variety of client applications including Java
client applications, wireless devices, JavaServer Pages and Java servlets.

In the remainder of this article I’ll be taking a more detailed look at
frameworks using Oracle’s Business Components for Java (BC4J) prod-
uct.

Business Components for Java
Oracle’s BC4J is a Java-based programming framework that enables

programmers to develop, deploy and customize multitier database
applications. It is intriguing in that it’s actually a framework designed to
create other frameworks.

A BC4J application comprises three tiers – client, business logic and
database. The client tier can range from a full-blown desktop worksta-
tion running Java applications all the way to ultra-thin devices such as a
PDA or cellular phone. The business tier contains business rules, appli-
cation logic and predefined views of business data – and can be
deployed as EJB session beans or CORBA server objects or used as a sim-
ple set of local classes. The database tier contains the persistent store for
the application (such as an Oracle8i database).

BC4J is both a development framework and a deployment framework
– all written in Java – and provides a suite of design-time wizards and
editors providing you with the tools to define the base characteristics of
your components. Each component (constructed of attributes, relation-
ships and business rules) is then implemented as Java source code and
XML metadata that implements the behavior you’ve specified during the
design phase. The generated code inherits from the BC4J framework,
keeping the Java source files relatively concise, thus making it easier to
modify the components as necessary.

BC4J applications are constructed from six framework components
(see Figure 1):
• Application modules
• View objects
• Entity objects
• View links
• Associations
• Domains

Entity objects encapsulate the business logic and attribute (column)
information for database objects. The underlying database objects
themselves can be tables, views, synonyms or Oracle snapshots. Within
the BC4J developer environment you can either define new entity
objects and then use them to create new database tables or you reverse-
engineer them from existing database objects. In the sample donor
management application shown in Figure 1, Alumni, Pledge and Dona-
tion are all entity objects. By default the attribute names will match the
table column tables, but you’re free to change the attribute names to bet-
ter reflect the needs of your business within the BC4J entity object. Since
the entity objects are derived from database objects, they inherit data-
base information such as primary/foreign key relationships, data type,
length, precision and scale information.

Relationships between entity objects can be defined through associ-
ations. Consider the Alumni and Pledge entity objects in Figure 1.
Although it’s likely that a referential relationship already exists in the
database between the Alumni and Pledge tables, you can define an asso-
ciation at the object level with BC4J as well. (In fact, BC4J will reverse-
engineer these associations for you if they exist in the database.) Associ-
ations provide you with the tools to define accessor methods in the
model. For example, you could create an accessor method in the Alum-
ni entity object called getPledges that would retrieve the Pledge records
automatically.

View objects are logical definitions of data that are used to join, filter,
project and sort business data for a specified scenario. Although they’re
similar in concept to database views, they provide for a much higher
level of abstraction. Figure 1 shows two view objects in the form of

FIGURE 1 Sample BC4J application

21JUNE 2000

Java COM

KL Group Inc
www.klgroup.com/ticket

Java COM

22 JUNE 2000

BigSpenders and LatePayers. View objects use SQL under the covers to
fetch their data, but client applications are insulated from these details.
Application code manipulates the data by “getting and setting” attribute
values, and changes are persisted to the database by the framework
when transactions are committed. When you define a view object you
can determine which underlying attributes are read-only and which
ones support read/write operations. BC4J caches view objects at the
entity object level and all view objects referenced within a single trans-
action share the same cache, so that changes to one view are visible to all
other views within the same transaction. Many business intelligence-
style applications offer “click-through” capabilities for drilling down into
detail data from master records and the view cache can simplify the
development process for these applications.

BC4J allows you to define relationships between multiple views
through the View Link component. The View Link wizard provides a tool
for specifying the relationship, either one to one or one to many. View
Links provide restrictions against detail data (much like adding a
WHERE clause to SQL) and are particularly useful in designing mas-
ter/detail and master/detail/master relationships in your application.

Data definitions and validation logic for attributes can be specified
using Domains. The base Domain component is provided by the BC4J
framework itself, but the developer defines the data type, Java class and
validation built into the constructor. Many common validations (prima-
ry key, mandatory, unique, persistent and default value) are provided
within the domain wizard. Domains can also serve as base data types for
new attributes. For example, creating an “alumni ID number” domain in
the donor management application.

The Application component is a Java class that inherits from ora-
cle.jbo.server.ApplicationModuleImpl – and the Application wizard
generates this class for you. The application component provides an
overall container for your application. As with any framework, you’ll

want to have the ability to customize this class. BC4J allows you to
specify a custom class (which must extend from the ApplicationMod-
uleImpl class) for this operation as well. If your organization already
has some application-specific logic in place, you can use this tech-
nique to include your own logic in the generated framework. This is a
critical area in which Java-based frameworks diverge from classic 4GL-
style frameworks. Whereas a 4GL framework tended to force develop-
ers to accept the generated framework, the Java-based framework is
extensible.

Working with BC4J
The BC4J is included with Oracle’s JDeveloper IDE. While you can

create complete applications from scratch using a framework, many
applications are constructed from preexisting data models. A horizon-
tal framework can be particularly useful in such cases. Since you
already have the data model in place, there’s no value in having pre-
configured entity objects as you would with vertical frameworks. In-
house we use an existing data model as a starting point for technical
testing. This logical model is based around a fictional university data-
base of student and alumni data. In order to get the most out of a
framework it’s important to have a reasonably well-defined data
model. For example, the NETU model (see Listing 1) makes extensive
use of primary and foreign keys to map the relationships between the
various tables. If we’d ignored declarative integrity constraints and
built the data integrity into our application using database triggers and
stored procedures, it would be much more difficult for the framework
to interrogate the data model.

The NETU data model is composed of 15 tables, but the logical donor
management application concerns itself with the Alumni section of the
data model as shown in the UML diagram in Figure 2.

1..1 0..1

Reference_1 Reference_3

O...n
Reference_1

O...n
Reference_3

0..n
Reference_2

0..1
Reference_2

FIGURE 2 Alumni UML model FIGURE 3 Alumni/Donations view

TABLE 1 BC4J Automated Functionality
Examples

View Objects support smart caching and
pessimistic locking

All modifications (inserts, updates and deletes)
to Entity Objects are handled as part of any
transaction

The framework automatically manages SQL
lookups as you traverse associations in code.

23JUNE 2000

Java COM

ThinWeb
Technologies

www.thinweb.com

Java COM

24 JUNE 2000

Each UML entity in the UML model corresponds to an entity object
in the BC4J framework. From this simple data model you can see the
power of using a development framework. The BC4J development envi-
ronment created a complete application skeleton implemented in Java
and XML from the data model. Many of the most common processing
tasks have been implemented as a series of Java classes. For example,
each Alumni record is connected to zero or more Pledge records that are
in turn connected to zero or more Donation records. This is a fairly
complex master to detail/detail relationship that would normally
require a significant amount of basic coordination code to implement.
This is exactly the situation in which a framework can provide signifi-
cant value. In the case of BC4J, the framework includes a significant
number of generated routines for working with your data such as those
listed in Table 1.

One of the more interesting built-in capabilities is that multiple views
of the same data within a single session are automatically synchronized.
Figure 3 shows the test interface for the generated application with the
Alumni table joined to the Pledge table.

The test interface provides a simple mechanism for working with the
generated code in an interactive fashion. You can navigate through the
Alumni records and they’re automatically coordinated with the proper
Donation records. Even if you open multiple Alumni views and modify
data, it will remain consistent within all of the interfaces. Experienced
4GL developers are most likely accustomed to getting this type of default
behavior out of their development tools, but this type of automated
development might be new for Java developers. The key difference with
the BC4J framework versus a proprietary 4GL is that the generated appli-
cation is Java and XML. Changes to attributes are handled with get and
set methods, and navigation through rows is handled by built-in naviga-
tion methods. The objects and attributes themselves are implemented as
XML documents, as shown in Listing 1.

All of the attributes for each object are implemented as XML docu-
ments in the BC4J framework. Some of the elements in the XML descrip-
tor will be immediately familiar, such as the base data type for each field
in the table/view. BC4J implements all of the extended attributes in the
XML file as well. Foreign key connections and field validations are also
generated into the XML document for each component.

The combination of Java code and XML component definitions
makes it easy to modify any behavior of the framework. Developers can
also modify the application easily with minimal impact to the code by
leveraging the Java language’s “extend” capability. (You can also extend
your business components by modifying the XML metadata.) As you roll
out new versions of the base application, these customizations are pre-
served. Thus, if a client were to create a modified version of the Alumni
table that supports additional attributes, new versions of the base appli-
cation could be deployed subsequently without losing these customiza-
tions.

Deploying Applications
The last critical element of any framework is the ability to deploy the appli-

cation in a flexible manner. While you might standardize on the J2EE as your
deployment platform, you may need to deploy the same logical application as
a thick Java client program using Java servlets and JavaServer Pages. You may
also find it necessary to deploy the application to a CORBA environment in
order to connect the application to an external application controlled by one
of your business partners. For example, in the sample NETU case we might
decide to use a third-party telephone calling service to contact the Alumni and
solicit pledges and donations. While we may implement the donor manage-
ment application as an EJB application internally, we could deploy portions of
the application externally as a CORBA service (or as a set of local classes). Our
telephone solicitation partner could connect to the Alumni data through their
own internal CORBA applications (for example). Listing 2 shows the partial
results of generating an interface for our NETU application as both an EJB
application and a VisiBroker CORBA application.

All of the necessary code for the application is deployed along with the
custom code. With BC4J the client code is designed to work against inter-
faces, so it’s not necessary to modify developer-written application code
when deploying the application to multiple tiers. The default deployment
model with BC4J uses a very coarse-grained application model. In the NETU
example case the application was deployed using a single remote interface
for CORBA/EJB (see Listing 2). While you are certainly free to expose addi-
tional business methods as remote interfaces, all of the core functionality
that we’ve discussed thus far is provided in the default BC4J framework.

Summary
In record time we were able to construct a complete application with

a JSP front end against our NETU database model by leveraging the
power of a framework. The application provided read, write, update and
delete functionality across all 15 tables – including the coordination of
multiple master/detail relationships, query by example and foreign-key
validation. Using the BC4J framework provided us with the luxury of
concentrating on the business logic without regard to the underlying
plumbing. Unlike traditional productivity solutions, however, we can
easily modify the base functionality of the application using standard
Java coding techniques. Frameworks such as BC4J provide enterprise
developers with the tools to tackle complex development efforts with
short deadlines – a requirement of the new e-business economy.

AUTHOR BIO
Jim Milbery is a software consultant based in Easton, Pennsylvania, with Kuromaku Partners LLC. He has

over 15 years of experience in application development and relational databases.

jmilbery@kuromaku.com

<?xml version="1.0" encoding='WINDOWS-1252'?>
<!DOCTYPE Entity SYSTEM "jbo_03_01.dtd">

<Entity
Name="Donations"
DBObjectType="table"
DBObjectName="DONATIONS"
AliasName="Donations"
BindingStyle="Oracle"
CodeGenFlag="4"
RowClass="netu.DonationsImpl" >
<DesignTime>

<Attr Name="_isCodegen" Value="true" />
<AttrArray Name="_publishEvents">
</AttrArray>

</DesignTime>
<Attribute

Name="DonationNo"
Type="oracle.jbo.domain.Number"
ColumnName="DONATION_NO"
ColumnType="NUMBER"

SQLType="NUMERIC"
IsNotNull="true"
Precision="8"
Scale="0"
TableName="DONATIONS"
PrimaryKey="true" >
<DesignTime>

<Attr Name="_DisplaySize" Value="0" />
</DesignTime>

</Attribute>
<Attribute

Name="Id"
Type="oracle.jbo.domain.Number"
ColumnName="ID"
ColumnType="NUMBER"
SQLType="NUMERIC"
IsNotNull="true"
Precision="5"
Scale="0"
TableName="DONATIONS" >
<DesignTime>

<Attr Name="_DisplaySize" Value="0" />
</DesignTime>

Listing 1: Donations Table in XML format

25JUNE 2000

Java COM

Allaire
Corporation
www.allaire.com/download

Java COM

26 JUNE 2000

</Attribute>
<Attribute

Name="Fund"
Type="java.lang.String"
ColumnName="FUND"
ColumnType="VARCHAR2"
SQLType="VARCHAR"
Precision="20"
TableName="DONATIONS" >
<DesignTime>

<Attr Name="_DisplaySize" Value="20" />
</DesignTime>

</Attribute>
<Attribute

Name="Restriction"
Type="java.lang.String"
ColumnName="RESTRICTION"
ColumnType="VARCHAR2"
SQLType="VARCHAR"
Precision="15"
TableName="DONATIONS" >
<DesignTime>

<Attr Name="_DisplaySize" Value="15" />
</DesignTime>

</Attribute>
<Attribute

Name="Amount"
Type="oracle.jbo.domain.Number"
ColumnName="AMOUNT"
ColumnType="NUMBER"
SQLType="NUMERIC"
Precision="10"
Scale="0"
TableName="DONATIONS" >
<DesignTime>

<Attr Name="_DisplaySize" Value="0" />
</DesignTime>

</Attribute>
<Attribute

Name="GiftDate"
Type="oracle.jbo.domain.Date"
ColumnName="GIFT_DATE"
ColumnType="DATE"
SQLType="DATE"
TableName="DONATIONS" >
<DesignTime>

<Attr Name="_DisplaySize" Value="7" />
</DesignTime>

</Attribute>
<Attribute

Name="CheckNumber"
Type="oracle.jbo.domain.Number"
ColumnName="CHECK_NUMBER"
ColumnType="NUMBER"
SQLType="NUMERIC"
Precision="4"
Scale="0"
TableName="DONATIONS" >
<DesignTime>

<Attr Name="_DisplaySize" Value="0" />
</DesignTime>

</Attribute>
<AccessorAttribute

Name="Alumni"
Association="netu.DonationsFk1Assoc"
AssociationEnd="netu.DonationsFk1Assoc.Alumni"
AssociationOtherEnd="netu.DonationsFk1Assoc.Donations"
Type="AlumniImpl" >

</AccessorAttribute>
<AccessorAttribute

Name="RestrictCodes"
Association="netu.DonationsFk2Assoc"
AssociationEnd="netu.DonationsFk2Assoc.RestrictCodes"
AssociationOtherEnd="netu.DonationsFk2Assoc.Donations"
Type="RestrictCodesImpl" >

</AccessorAttribute>
<Key

Name="DonationsPk" >
<DesignTime>

<Attr Name="_DBObjectName" Value="DONATIONS_PK" />
<Attr Name="_isPrimary" Value="true" />
<Attr Name="_isNotNull" Value="false" />
<Attr Name="_isUnique" Value="false" />
<Attr Name="_isCheck" Value="false" />
<Attr Name="_isCascadeDelete" Value="false" />

<Attr Name="_isDeferrableConstraint" Value="true" />
<Attr Name="_isValidateConstraint" Value="false" />
<Attr Name="_isInitiallyDeferredConstraint"
Value="true" />

<Attr Name="_isDisabledConstraint" Value="false" />
<AttrArray Name="_attributes">

<Item Value="netu.Donations.DonationNo" />
</AttrArray>

</DesignTime>
</Key>
<Key

Name="DonationsFk1" >
<DesignTime>

<Attr Name="_DBObjectName" Value="DONATIONS_FK1" />
<Attr Name="_referencedKey" Value="ALUMNI_PK" />
<Attr Name="_isPrimary" Value="false" />
<Attr Name="_isNotNull" Value="false" />
<Attr Name="_isUnique" Value="false" />
<Attr Name="_isCheck" Value="false" />
<Attr Name="_isCascadeDelete" Value="false" />
<Attr Name="_isDeferrableConstraint" Value="true" />
<Attr Name="_isValidateConstraint" Value="false" />
<Attr Name="_isInitiallyDeferredConstraint"
Value="true" />

<Attr Name="_isDisabledConstraint" Value="false" />
<AttrArray Name="_attributes">

<Item Value="netu.Donations.Id" />
</AttrArray>

</DesignTime>
</Key>
<Key

Name="DonationsFk2" >
<DesignTime>

<Attr Name="_DBObjectName" Value="DONATIONS_FK2" />
<Attr Name="_referencedKey"
Value="RESTRICT_CODES_PK" />

<Attr Name="_isPrimary" Value="false" />
<Attr Name="_isNotNull" Value="false" />
<Attr Name="_isUnique" Value="false" />
<Attr Name="_isCheck" Value="false" />
<Attr Name="_isCascadeDelete" Value="false" />
<Attr Name="_isDeferrableConstraint" Value="true" />
<Attr Name="_isValidateConstraint" Value="false" />
<Attr Name="_isInitiallyDeferredConstraint"

Value="true" />
<Attr Name="_isDisabledConstraint" Value="false" />
<AttrArray Name="_attributes">

<Item Value="netu.Donations.Restriction" />
</AttrArray>

</DesignTime>
</Key>
<Key

Name="DonationsFund" >
<DesignTime>

<Attr Name="_DBObjectName" Value="DONATIONS_FUND" />
<Attr Name="_checkCondition" Value="fund =
'Annual Fund' or fund = 'Capital Cam-
paign'" />

<Attr Name="_isPrimary" Value="false" />
<Attr Name="_isNotNull" Value="false" />
<Attr Name="_isUnique" Value="false" />
<Attr Name="_isCheck" Value="true" />
<Attr Name="_isCascadeDelete" Value="false" />
<Attr Name="_isDeferrableConstraint" Value="true" />
<Attr Name="_isValidateConstraint" Value="false" />
<Attr Name="_isInitiallyDeferredConstraint"
Value="true" />

<Attr Name="_isDisabledConstraint" Value="false" />
<AttrArray Name="_attributes">

<Item Value="netu.Donations.Fund" />
</AttrArray>

</DesignTime>
</Key>
<Key

Name="SysC002937" >
<DesignTime>

<Attr Name="_DBObjectName" Value="SYS_C002937" />
<Attr Name="_checkCondition" Value=""ID" IS
NOT NULL" />

<Attr Name="_isPrimary" Value="false" />
<Attr Name="_isNotNull" Value="false" />
<Attr Name="_isUnique" Value="false" />
<Attr Name="_isCheck" Value="true" />
<Attr Name="_isCascadeDelete" Value="false" />
<Attr Name="_isDeferrableConstraint" Value="true" />

27JUNE 2000

Java COM

Appeal
Virtual Machines

www.jrockit.com

Java COM

28 JUNE 2000

<Attr Name="_isValidateConstraint" Value="false" />
<Attr Name="_isInitiallyDeferredConstraint"
Value="true" />

<Attr Name="_isDisabledConstraint" Value="false" />
<AttrArray Name="_attributes">

<Item Value="netu.Donations.Id" />
</AttrArray>

</DesignTime>
</Key>

</Entity>

import netu.*;
import oracle.jbo.common.remote.*;
import oracle.jbo.common.remote.corba.*;

// --- File generated by Oracle Business Components for Java.

public class NetuModuleServerVB extends
oracle.jbo.server.remote.corba.vb.VBrokerApplicationModule {

public NetuModuleServerVB() {
init();

}

protected void init() {
setRemoteInterfaceClass(RemoteApplicationModuleOpera-

tions.class);
setTieClass(_tie_RemoteApplicationModule.class);
setApplicationModuleDefName("netu.NetuModule");

}

public static void main(String argv[]) {
try {

new
netu.server.vb.NetuModuleServerVB().initServer(argv);

}
catch (Exception ex) {

ex.printStackTrace();
}

}
}

package netu.common.ejb;

import oracle.jbo.common.remote.ejb.*;
import oracle.jbo.common.remote.*;

// --- File generated by Oracle Business Components for Java.

public interface NetuModuleHome extends javax.ejb.EJBHome {

RemoteNetuModule create() throws java.rmi.RemoteException,
javax.ejb.CreateException;

RemoteNetuModule create(SessionInfo info) throws
java.rmi.RemoteException, javax.ejb.CreateException;

RemoteNetuModule create(RemoteApplicationModule parent,
String amName) throws java.rmi.RemoteException,
javax.ejb.CreateException;

RemoteNetuModule create(RemoteApplicationModule parent,
String amName, String amDefName) throws java.rmi.RemoteExcep-
tion, javax.ejb.CreateException;

}

Listing 2: EJB Home and CORBA Stub for NETU

G U E S T E D I T O R I A L

The Diminishing Role of Java
Ironically, as Java becomes an operating platform, more and more

uses of the technology will diminish Java’s visible role to the ultimate
user. It’s critical that developers and IT managers understand this
shift and take off the Java blinders, as it were, to help them under-
stand how to apply the platform overall.

Two key examples come to mind in which Java is the runtime plat-
form but not the end-user technology: dynamic page engines and
scripting environments, and XML protocols and Internet middleware.

DYNAMIC PAGE ENGINES AND SCRIPTING ENVIRONMENTS
Over the past several years a dominant model has emerged for

delivering page-based Web applications. This page-based scripting
model typically separates the task of dynamic content generation,
basic user interactivity and simple application logic into a template-
and script-based environment. Often this tier is combined with a
business logic tier implemented using a component object model
such as COM, CORBA or EJB, with the implementation environment
typically C++ or Java.

Interestingly, the popular page-based scripting models (ColdFu-
sion, ASP, JSP) are increasingly trying to abstract away the lower lev-
els of complexity required by traditional system programming. In
ColdFusion and JSP, for example, the ideal programming model
becomes tags and tag libraries used by designers and interactive
developers to put together a user experience. In this model, while
Java may be the runtime platform (it is, in fact, the ideal runtime
platform for this dynamic page tier), it’s essentially invisible to the
developer. And this is a very good thing. Java programmers should be
happy to know that their platform is the foundation but that others
are using it without the complexity of the full language.

XML PROTOCOLS AND INTERNET MIDDLEWARE
Another great example is emerging XML protocols for distributed

application integration, including protocols for distributed objects,
messaging, transactions and security. While J2EE provides an out-
standing runtime environment for such protocols and interfaces,
the use of these XML protocols will increasingly be divorced from
developers knowing anything about the actual Java runtime. In most
cases XML middleware will connect applications written in scripting
environments such as JSP, ColdFusion, Perl and ASP rather than full-
blown EJBs.

Both of these examples illustrate an ultimate paradox – which is
that as Java becomes more and more successful as a platform, it will
grow less and less visible as a language. It’s critical that developers
embrace this idea and open up to the fact that while not every appli-
cation or system may be implemented in the Java language, ulti-
mately it will still be running on Java bytecode.

The fact that these kinds of observations and discussions are hap-
pening symbolizes the incredible power and success of Java. With
this power comes a degree of responsibility to vendors and cus-
tomers with regard to redefining Java’s role in computing. Whatever
the case, happy fifth birthday!

AUTHOR BIO
Jeremy Allaire is the cofounder and chief technology officer at Allaire Corporation, Inc. In this
position Jeremy helps determine the company’s future product direction and is responsible for
establishing key strategic partnerships within the Internet industr y. He is also the company's
primary technology evangelist.

Jeremy Allaire —continued from page 10

www.allaire.com

29JUNE 2000

Java COM

Compware
NuMega

www.compuware.com/numega

JavaOne is the Java event of the year.
Period. It’s our Oscars…our Olympics…our
show. One of the few shows where the ratio
of geeks per head is still encouragingly
high. For those of you that haven’t yet been
to one, you’re missing out on one great
party. Now when I say party, I don’t neces-
sarily mean loud music and huge quanti-
ties of alcohol, but I mean party in the get-
ting-to-know-everyone sense. I would of
course be lying if I said that alcohol or
music wasn’t part of the equation!

We’re currently preparing ourselves
for the annual pilgrimage over the
Atlantic to attend. Murray, The Riddler
(Darren), Ceri and I will all be in atten-
dance, hovering around the JDJ booth,
conducting a demanding schedule of
radio interviews. You’ll recognize us fair-
ly easily – we’ll be the ones decked out
in full Scottish kilts, with a micro-
phone taped to our mouths. The
JDJ staff and I are preparing the
radio interview schedule, and let
me tell you, we have some real-
ly cool interviews lined up, so
be sure to stop by the booth
and check us out. Sadly, my
regular radio cohost won’t be
joining me this year; Keith has
other duties to perform elsewhere.

Most of the JDJ editors will
be there, so come and introduce
yourself to us and tell us
what you really think of
our columns. But be warned:
don’t be too harsh – seeing
grown men cry can some-
times be a hard thing to deal with.
I’d especially like to extend an invi-
tation to all those on the Straight Talk-
ing mailing list: I want to see faces. We’re
attempting to arrange a bit of a get-
together, so be sure to stop by the JDJ
booth and Web site for venue details.

In the midst of all this excitement
leading up to JavaOne, let me get on
with business and move forward with
this column. I have a number of things I
want to bounce off you this month.

The “Valley”
Keith has just returned from a fact-

finding mission to Silicon Valley. He
went with a group of other Scottish

companies for a structured learning
experience that was prepared by the
Scottish Enterprise Board. Keith met
with many representatives from all
walks of the computing life, from ven-
ture capitalists right up to U.S. Customs
officials regarding visas. He came back
with many facts, some surprising, some
not. Let me share some of them with
you.

Funding…I’m not going to lie to
you…it doesn’t look good. It seems to be
a very nepotistic world, and unless you
know someone that can get your foot in
the door, getting these people to even
answer your calls is a major project in
itself. If you do manage to get a contact,
be sure to have your “exit strategy” fig-
ured out and ready to implement within

at least two years. So anyone
wishing to build a large
empire can forget about it!

Assuming you’ve got some money
sorted out, they’ll want to put at least
one person on the board and want you to
have your offices no more than 30 min-
utes away from their offices. Hazarding a
rough stab in the dark here, I’m thinking
Scotland may just fall out with that par-
ticular criterion.

That said, there seem to be some
shortcuts that can be employed success-
fully. If you’re young enough that univer-
sity is still in the cards, may I suggest you
go to Stanford at Palo Alto? Since this has
been the breeding ground for many of
the large players in our industry, venture

capitalists are sniffing around this place
like flies around dung. In one reported
case a VC apparently snuck into a class
that taught how to put successful busi-
ness plans together. Upon class comple-
tion she canvassed some of the students
for their business plans. Clever, clever.

Let’s assume you’ve got your money,
you’ve got your “exit strategy,” and all
you need to do now is to implement the
idea. Oh boy, this is where the fun really
begins. Keith spoke to many people on
this front, including a number of com-
panies looking to recruit and a number
that offered recruitment management.

As regular readers know, this column
isn’t a great fan of the large salaries this

industry is offering. The bubble on
this particular minefield is going to

burst and there’s going to be such
fallout from this over exaggerated
worth. Keith was told one particu-
lar story of a 19-year-old who

wanted well in excess of $100K plus
all benefits, stock options and so

forth – and was then promptly
shown the door. Now I’m sure

some company will pay this
foolish salary, but what are they
really buying? Who knows? But

one thing’s for sure: there’s a real
skills shortage in the Valley at the
moment, and with salaries rocketing
forever upward, there seems to be no
immediate end in sight.

Every cloud has a silver lining…even
this recruitment one. Many companies
are now looking outside the Valley for
their development team. Many of the
large start-ups have development
departments dotted all over the globe:
Norway, Scotland, India, Ukraine – to
name but a few of the ones I know of per-
sonally. A budget of $100K will buy you a
team of world-class developers in any
one of these countries, so why buy into
the game of having to pay a single “boy”
$100K just because he’s in the same loca-
tion that you’re in? It’s madness.

StraightTalking.Two & JavaOne.Five

WRITTEN BY
ALAN WILLIAMSON

I
t seems to be the month for celebrations. Not only is it the fifth JavaOne, but it’s
also the second anniversary of this column. Both are still going strong, so hurrah!
on both accounts. Long may it continue!

Java COM

30 JUNE 2000

31JUNE 2000

Java COM

Gemstone
www.gemstone.com/welcome

It’s this very madness that has led to
the boom in the software industry in
India. I recently read an article on this
topic that presented a well-balanced
argument in favor of using such offshore
development teams. Many are reluctant
to entrust their ideas to teams that are so
remote. That I can understand. But I’d
strongly recommend that you look into
some of these companies before you
decide one way or the other.

Of course, I’m a big believer in off-
shore development; that’s one of the ser-
vices we provide here at n-ary. We’ve
built the technology behind a number of
the dot-com sites, all while being in the
middle of the lowlands of Scotland and
at a fraction of the cost that would have
been incurred if bought locally. Testimo-
nials from many happy customers state
that by letting us handle the core tech-
nology, they can get on with making
their business a success. Keith picked up
many hot leads for us and we’re evaluat-
ing them to decide which ones to
explore further. That was another thing
Keith noticed: the sheer volume of indi-
viduals with the latest winner. He has
never seen so much hope in one place
before.

For all those sitting with what you
believe is a killer idea, best of luck to you.
It appears to be a well-trodden path,
with many others either in front of or just
behind you. Much advice and at times
conflicting advice is at hand. Keep cool
and remain focused. It’ll be worth it.

Bug Report
This column is written for your pleasure,

and I welcome all suggestions and com-
ments to keep it fresh and entertaining.
With that in mind, a number of months ago
I solicited the Straight Talking mailing list
(http://listserv.n-ary.com/mailman/listin-
fo/straight_talking) for suggestions on what
they’d like to see me addressing on a
monthly basis. One suggestion that came
back was to have a quick look at the official
Java Bug Parade at the Developer Connec-
tion (http://developer.java.sun.com). I’ve
been mulling over this idea and now, after
polling a number of others, I hereby official-
ly announce the inclusion of a new section,
aptly titled “Bug Report.” (Up all night ago-
nizing over that title!)

I’ve spent quite a bit of time going
through many of the bugs/RFEs (Request
for Enhancements) that appear in the top
25 lists. Some interesting information for
you: of the top 25 bugs, 20 of them are
related to GUI APIs. I found this very sur-
prising. Looking through the bugs didn’t
provide me with much entertainment,
but flip over to the RFE and you find
some really heated discussions.

At the top of the list, as expected, is the
old JDK-on-UNIX chestnut. With over
2,900 votes, there is a call for an official
port of the JDK for a FreeBSD platform.
Apparently there’s a workaround to allow
the JDK to run on a BSD platform, but this
hasn’t appeased the masses. Considering
the request was posted only in November,
the response has been fairly quick to
amass this amount of feedback. Converse-
ly, a quick surf over to the recently closed
bugs will reveal the closing of the “Support
JDK on Linux,” which secured over 4,500
votes to make it happen. Granted, this
post has been open since December 1997
and was only closed in December ’99, two
years later. So all those on the BSD
list…hang in there, it could be a long wait.

Moving on to an RFE that we here at
n-ary would dearly love to see: the abili-
ty for Java to support the ICMP protocol.
If you look at BugID#4093850, it con-
tains many good discussions regarding
why it should be included in the core
JDK. For those of you that are unfamiliar
with the ICMP protocol, it is the proto-
col that the likes of ping and traceroute
use. It’s part of the IP protocol and tech-
nically there’s no reason why it shouldn’t
be supported. The good news on this
front is that the necessary APIs that will
allow access to this lower-level informa-
tion could be provided in the next
release of Java, code-named Merlin.

After reading the details on what could
be included in Merlin, (http://java.-
sun.com/aboutJava/communityprocess/
jsr/jsr_059_j2se.html), it would appear that
another highly voted for bug could be
knocked on the head. BugID#4075058,
“Adding Support for Non-Blocking I/O,” has
gotten over 400 votes and has been on the
list since August 1998. One major problem
with handling client connections in Java is
the requirement to have one thread per
client connection to effectively handle com-
munications. There are a number of
workarounds, but none of them provide the
required level of control. To this end, build-
ing applications that need to handle large
volumes of clients – for example, Web
servers – is limited to around 2,000 concur-
rent clients. This would appear to be the
maximum number of sockets that Java can
handle sitting in a read() blocking call with
the bug report sighting a piece of sample
code to prove this figure. What I found par-
ticularly amusing about this mail was just
how passionate some of the comments at
the bottom appeared. If you’re bored one
day, I’d recommend you read them – might
prove interesting.

If you spend any length of time on
this part of the Internet, it would be easy
to become very cynical about the whole
Java revolution. Reading through all
these bug reports it’s a wonder any of it

is working. Java is now evolving into a
large beast, and with this a number of
wee idiosyncrasies are to be expected.
So don’t panic just yet.

Support Hall of Shame
Here’s an update on the Dell ASP fiasco

I reported a couple of months back. You’re
going to love this, and although I have been
sworn to secrecy concerning the originator
of the post, it doesn’t detract any from the
story. You may recall my writing about how
awful Dell’s Web site was, that it resulted in
our order being doubled and that it was
due to their Web site crashing at the wrong
time, thanks to the wonders of Microsoft’s
ASP. Well, this story far outranks my tale,
and I implore you to be more creative in
your custom choices when choosing your
next system. Let me explain.

Reader-J (what we’ll call him) wished to
buy a multiple processor system with the
Windows 2000 operating system (now do
you see why I’m withholding his name?).
He selected a 733MHz as his first proces-
sor, and his choice for the second proces-
sor was quite cool. In the drop-down he
was able to select a second 733MHz at a
reduction of $349. Yup, a reduction. Cool,
eh? The reason is that Windows 2000
apparently doesn’t support multiple
processors and the business logic at Dell
couldn’t cope with this and therefore
offered a reduction. Reader-J had to haggle
with the Dell salesperson before they’d
honor the sale, but honor it they did.

We can’t put this down to ASP, of
course; it could just as well have hap-
pened with any other solution. It was the
business logic that was screwed up, not
the technology. As the complexity of con-
figurations increases, so does the num-
ber of potential bugs. From a consumer’s
point of view, I’d recommend that you
play around with some of these vendor
Web sites. Who knows? You may end up
with a configuration where they owe you
money! Stranger things have happened.

Keep Those Stories Coming
On that note I’ll bid you farewell for

another month, and I’ll look forward to
meeting some of you at JavaOne.Five, so
be sure to stop by the JDJ SYS-CON Radio
booth.

AUTHOR BIO
Alan Williamson is CEO of n-ary (consulting) Ltd, the first
pure Java company in the United Kingdom.The firm, which
specializes solely in Java at the server side, has offices in
Scotland, England and Australia. Alan is the author of two
Java servlet books, and contributed to the Servlet API. He
has a Web site at www.n-ary.com.

alan@sys-con.com

32 JUNE 2000

Java COM

33JUNE 2000

Java COM

Cerebellum
www.cerebellumsoft.com

J A V A & R O B O T I C S

Simple robotics with Java servlets

How to Control a Robot Over the Internet

Java COM

34 JUNE 2000

We’ll start by showing you the basics
of controlling an electric motor over the
Web. Specifically, we’ll describe how to
control radio control (RC) servo motors
over the Web. Servos are electric motors
popular for use in many applications,
including robotics. The components of
the system (see Figure 1 for an overview)
include a front-end HTML form for
entering commands to control the robot,
and a Java servlet that accepts these
commands and uses a free open-source
Java software kit from FerretTronics to
send them through a serial port to your
robot. On the other end of the serial port
receiving these commands will be a Fer-
retTronics chip, the FT639 Servo Con-
troller. The FT639 converts the serial
data into electric pulses that a servo can
understand. The FT639 sends the signal
to the appropriate servo, which responds
by moving to the position specified. We’ll
assume that your robot is attached to
your serial port and that the computer
you’re using is running a Web server that
supports Java servlets.

Software
The software for controlling the

robot has four parts: an HTML form, a
Java servlet, the FerretTronics Java
Development Kit (FTJDK) and Java-
Comm. These four components are list-
ed in the same order that commands
flow through the system: you enter the
commands in the HTML form, then
press the send button and they’re posted
to a Java servlet that uses the FTJDK to
format the commands and send them
on through the serial port using the
JavaComm package (javax.comm.*) –
the standard Java extension for commu-
nication ports.

S
o you want to build a robot that walks around and bumps into
things. But that’s not enough for you (this is the year 2000,
after all); you also want to control your robot over the Inter-
net.What’s more, you want to use Java to control it.

WRITTEN BY
DARREL RIEKHOF

& KEITH FLIGG

Robot Control
Web page

The Internet
(HTTP)

Serial PortWeb Server

Java Servlet

Your
Robot

FIGURE 1 Overview of system

FIGURE 2 HTML form, the robot control center

35JUNE 2000

Java COM

VisiComp
www.visicom.com/jdj6

J A V A & R O B O T I C S

Java COM

36 JUNE 2000

HTML Form
Before anything, we need a way for a

remote user to enter and send control
commands to the robot. We chose to use
a Web browser and an HTML form to post
the commands to a Web server (see Figure
2). We could have chosen to use an applet
to make a niftier graphical user interface
for controlling the robot, but opted for
standard HTML to keep things simple.

The form has standard HTML con-
trols for setting items, as follows:
• Position: Moves the servo to a certain

position.
• Pin: Specifies which servo to move. An

FT639 chip has five pins and a servo
could be attached to any of them.

• Pulse length: Sets the number of
degrees the servo can rotate. If pulse
length is set to short, the servo can
turn 90 degrees. If it’s set to long, the
servo can turn 180 degrees.

• Header length: Adjusts the zero posi-
tion of the servo.

Servlet
After you press the send button on the

HTML form, all the information is posted
over the Internet to the Java servlet (see
Listing 1). The servlet is installed on a
Web server and the Web server is physi-
cally attached to your robot through a
serial port. We’re keeping this servlet sim-
ple, with limited error-checking, and
avoiding performance issues. The servlet
works, but isn’t robust or efficient.

A few things will need to be set up on
your Web server to get this servlet work-
ing. First, you’ll need to get Java’s serial
port package (JavaComm). It’s a standard
Java extension package (javax.comm.*).
The Windows and Solaris reference
implementations are available on Sun’s
Web site (www.sun.com). Implementa-
tions for other operating systems are
available, but you might have to dig
around if you’re using an operating sys-
tem other than Windows or Solaris.

Three things you need to remember:
1. Put the comm.jar file from the JavaComm

package in the servlet engine’s classpath.
2. Ensure that the comm.jar file knows how

to find the native code that’s writing to
the serial port (a DLL file on Windows).

3. Check that the JavaComm code has
access to its properties file, javax.
comm.properties, which comes with
JavaComm.

If these steps aren’t followed and
JavaComm isn’t set up correctly, it won’t
be able to find any ports on your system
and the servlet won’t work. (See the doc-
umentation that comes with JavaComm
and your servlet engine for more details.)

The final thing you need to get is the
FTJDK – it’s available at www.ferrettron-
ics.com. You’ll need to put the ftjdk.jar
file in the servlet engine’s classpath.

If you’re not using Windows or if your
robot isn’t attached to COM2, you’ll
need to adjust the servlet code accord-
ingly so that it accesses the correct seri-
al port on your system, and then recom-
pile the servlet like this:

if (portId.getName().equals("COM2"

)) { … }

Let’s take a look at the servlet code,
starting with the doPost method because
that’s the method that gets invoked when
a remote HTML client presses its send
button and posts its form data to the
servlet. The first part of the code deals
with finding and opening the serial port.
It iterates through all the communication
ports it finds on the system and stops
when it finds the one specified. You may
need to change this code to point to the
port your robot is attached to (COM1,
/dev/term/a, and so on). Next, the servlet
code gets the form data, puts it into con-
venient variables, prints their values back
to the HTML client and then calls the
sendTo639 method. This method uses
the FTJDK, to write the appropriate bytes
to the serial port to control the servo.

Let’s take a closer look at the sendTo639
method. After it formats the parameters for
the FTJDK. it then creates an Ft639 object
from the FTJDK, connects it to a SerialPort
object from JavaComm and finally sends
the appropriate commands to configure
the FT639 chip or to move a servo attached
to one of the FT639’s pins. An Ft639 object
from the FTJDK knows how to translate
these requests into bytestreams that a real
FT639 chip can understand. The Ft639
object sends these bytes to the connected
serial port when one of its methods is
called. That’s all there is to it. The bytes will
flow out the serial port and eventually
reach an FT639 chip. The FT639 translates
the bytes to electric signals that a servo can
understand and sends these signals out on
one of its pins. The servo will then move to
whatever position the remote HTML client
requested.

The FTJDK
FTJDK is special software that can

translate your commands into a form that
a FT639 servo controller chip can under-
stand. It also contains classes for some of
the other chips that FerretTronics offers.
These include the FT649 chip that serves
as a serial router and lets you control up
to five devices through a serial port. The
FTJDK also contains software for a switch
input chip – the FT629, which helps get
feedback from your robot – and support
for the FT609, a stepper motor logic chip.

FTJDK Design
When designing the FTJDK, we

decided it would be best to allow the
developer to access the object that’s
attached to the device being controlled
without having to worry about where
the chip is in the circuit hierarchy of
FT639s, FT649 router chips and other
chips. This is important since an FT639
could be several levels away from the
serial port via multiple nested FT649+
chips. We originally designed the FTJDK
so that developers were required to indi-
cate the path the command would need
to take through the circuit, but changed
it to glue devices together with proxies.
The proxies remember the correct path
and let developers call methods directly
on the FT639 or another control chip.
(This is attached to the electric motor or
other device that you’re controlling.)

The downside of this arrangement is
that the user of the FTJDK needs to re-
create the physical hardware connec-
tions in the software so that the objects
know where they should forward com-
mands. For a large array of FT649s and
FT639s this may be somewhat burden-
some, but we feel the initial work is well
worth the effort as it removes the need
to include the routing information in
the command every time you want to
move a different servo. To redress the
shortcomings of this design, a future
version of the FTJDK will come with a
GUI allowing you to create your circuit
visually and then generate the code that
glues the devices together.

Figure 3 is a diagram of the entire
system. On the left is the software that
we’ve described above. On the right is
the hardware we’ll describe now.

The Hardware
Many of you may cringe at the

thought of dealing with hardware and
electronics, but don’t worry. It’s easy to
build the electronics in this project – it
requires just a few components: an
FT639 and circuit board, two resistors, a

A typical RC servomotor

37JUNE 2000

Java COM

Information
Architects

www.ia.com

J A V A & R O B O T I C S

38

diode and a serial cable. We also sell a kit
with step-by-step directions that con-
tains everything you need to build the
simple robot described in this article.

The robot in this article consists of a
single RC servo and isn’t very powerful or
interesting, but it could become so if you
treat it as a building block. Our example
can be extended to create just about any-
thing. The servo is controlled via the Fer-
retTronics FT639, which is in turn con-
trolled by the Java servlet described
above. The FT639 has eight pins – one for
the ground connection, one for the posi-
tive power supply (+5 volts) and one that
is connected to the transmit line of the
RS-232 connector from the host com-
puter (the serial line). The remaining five
pins are used to control up to five servos.

The connection to the serial port is the
most complicated aspect of the hardware.
It requires two resistors that act to reduce
the voltage from the serial port. Addition-
ally, a single diode is placed in line with the
serial line to prevent a negative voltage
from the host computer entering the cir-
cuit. You also need to connect the ground
from the serial port to the ground used by
the FT639. Finally, the RS-232 protocol on
the host machine must be set to 2400
baud, 8 data bits, 1 stop bit and no parity.
Don’t worry about setting the RS-232 pro-
tocol if you’re using the FTJDK – it takes
care of setting the correct protocol before
it sends any data over the serial port.

RC hobby servos have three wires
terminating at a single connector. One
wire is the ground, another is the +5 volt

supply and the third is for the control
signal. The control signal line is con-
nected directly to the FT639. The ground
and V++ wires are connected to the
same power supply as the FT639.

Conclusion
We’ve described a very simple – you

might say useless! – application in which
an RC servo is controlled via the Internet.
The FT639 can control up to five RC ser-
vos, however, and the ability to control
five servos adds a lot more flexibility to
the design of a robot. Some examples of
real-world projects you can make with
this framework include a remote con-
trollable Web-cam mount, a robotic arm,
a six-legged robot, an XY plotter and any
animatronic project like an animated
skeleton, dinosaur or face.

Resources
1. FerretTronics: www.ferrettronics.com
2. Article Supplement:

http://weasel.ferrettronics.com/jdj/
article_supp.html

3. JavaComm: www.javasoft.com/prod-
ucts/javacomm/index.html

4. FTJDK:
www.ferrettronics.com/ftjdk.com

SERVLET
com.ferrettronics.device.Ft639

Command from HTML client

javax.comm.SerialPort Servo (Robot Component)

FT639 Chip

Raw bytes that
an FT639 can
understand

Electric pulses
that Servos
understand

Serial Port

FIGURE 3 System diagram hardware

riekhof@primenet.com kfligg@azstarnet.com

AUTHOR BIOS
Darrel Riekhof, a Java

consultant based in
Tucson, Arizona, has
worked for several

companies including IBM,
MCI, Blue Cross Blue

Shield Association and
Intel. He’s also an owner

of FerretTronics, Inc.

Keith Fligg, who has
been interested in

electronics and robotics
since childhood, currently

works as a system
architect using the

Shlaer-Mellor Method,
building real-time

embedded software
architectures in C++ and
Java. He’s also part owner

of FerretTronics, Inc.

Java COM

JUNE 2000

Java Developer’s
Journal

www.javadevelopersjournal.com

39JUNE 2000

Java COM

Information
Architects

www.ia.com

Java COM

40 JUNE 2000

/**
* @(#)Ft639Servlet.java
*/

import com.ferrettronics.device.Ft639;
import java.io.*;
import java.util.*;
import javax.comm.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
* This is a sample servlet that takes input from
* a form, parses and processes it, and sends
* commands to a serial port to control
* an FT639 and attached servos.
*/

public class Ft639Servlet extends HttpServlet
{

////////// Data

SerialPort serialPort = null;

////////// Methods

public void init(ServletConfig config)
throws ServletException
{

super.init(config);
}

/**
* Send data to port in response to the POSTed
* form. Write a "confirmation" to the client.
*/

public void doPost(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException
{

// Set the "content type" header of response.
res.setContentType("text/html");
// Get response’s PrintWriter to return text
// to the client.
PrintWriter toClient = res.getWriter();
// Find the serial port that the FT639 is
// attached to. In this example, it is
// attached to 'COM2'. We enumerate through
// all the ports, and stop when we find it.
Enumeration portList =

CommPortIdentifier.getPortIdentifiers();
CommPortIdentifier portId = null;
while (portList.hasMoreElements())
{

portId =
(CommPortIdentifier)portList.nextElement();
if (portId.getPortType() ==

CommPortIdentifier.PORT_SERIAL)
{

// Windows
if (portId.getName().equals("COM2"))
{

try {
serialPort =

(SerialPort)portId.open(
"Sample639", // App Name
2000); // Timeout

break;
} catch (PortInUseException piue) {

toClient.println(
"Exception:
" + piue + "<p>");

piue.printStackTrace();
System.exit(-1);

}
} // end if

} // end if
} // end while
// Get pin.
String strPin = null;
String [] pinArray =

req.getParameterValues("pin");
if (pinArray != null) strPin = pinArray[0];
// Get pos.
String strPos = null;
String [] posArray =

req.getParameterValues("pos");
if (posArray != null) strPos = posArray[0];

// Pulse Length and Header Length support
// not included in this code.

toClient.println("<html>");
toClient.println("<title>Got it!</title>");
toClient.println("Pin=" + strPin + "<p>");
toClient.println("Pos=" + strPos + "<p>");
toClient.println("Serial Port =" +

serialPort + "<p>");
try {

sendTo639(strPin, strPos);
} catch (Exception excp) {

toClient.println(
"Exception:
" + excp + "<p>");

}
toClient.println("</html>");
// Close the writer; the response is done.
toClient.close();
if (serialPort != null) serialPort.close();

}

/**
* Send data to 639.
*
* @param sPin Specifies the 639 pin that the
* servo is attached to.
* @param sPos Specifies the position to move
* the servo to.
*/

public void sendTo639(String sPin,
String sPos)

throws Exception
{

if (serialPort == null)
{

throw new Exception(
"Serial port is null!!");

}
int pin = Integer.parseInt(sPin);
int pos = Integer.parseInt(sPos);

// Some error checking on pin and pos values
// could go here!!

// Create a 639 and
// connect it to the serial port.
Ft639 ft639 = new Ft639();
ft639.connectTo(serialPort);
// Move the servo
ft639.setServoPosition(pin, pos);

}

}

// EOF

Listing 1

41JUNE 2000

Java COM

Information
Architects

www.ia.com

It began sometime in late ’96 or early ’97 – JDK
1.0 still ruled and Tandem was still called Tan-
dem, not Digital or Compaq – when people from

IBM, Tandem and Oracle met and started to muse.
“Wouldn't it be nice to have SQL embedded in

Java just as it’s embedded in other host languages?
However, we don’t just want to copy previous
efforts but to do justice to the Java language.” Of
course, the embedding would have to permit the
use of compiled SQL statements and be just as
portable as Java code. It would also need to provide
the easiest, most robust way to write SQL code in
Java. Sun, Sybase and Informix soon joined the
fray…and the “JSQL” effort was born.

“Gotcha,” you’re thinking. “You meant to say SQLJ,
didn't you?” Well, yes and no – hold off just a second. The

JSQL enterprise was all about Java programs that call SQL.
When the same informal intercompany working group

also embarked on an effort to describe the implementation
of SQL stored procedures and functions in Java (christened

SQLJ, since it kind of goes in the opposite direction – SQL pro-
cedures that “call” Java in their body), this became known as

SQLJ part 1. And when they started yet another project to
describe how an SQL database could store Java objects in table

columns and also publish them as SQL types, this was called SQLJ
part 2. When the time came to submit JSQL to the ANSI standards

committee, it turned out that the name was already a registered trade-
mark of Caribou Lake Software for their JDBC drivers. So what did that

bewildered bunch of computer scientists do when they realized they’d
goofed? The same thing they’ve done since the dawn of the computer age:

they started counting from zero! Thus SQLJ part 0 was born.
On the other hand, the ANSI people don’t refer to it as part 0; in fact, they

don’t even refer to it as SQLJ: to them it’s SQL Part 10: Object Language Bind-
ings. ANSI put its imprimatur on SQLJ part 0 around the end of 1998. Since then,
SQLJ has been winding its merry way through the International Standards Orga-
nization, picking up a bunch of JDBC 2.0 features along the ride.

But enough history; let’s get back to serious business. In this article I’m going
to cover the following ground:
• A reprise of SQLJ iterators: all about positional iterators

• Calling stored procedures and functions in the database
• Reflections on bridging the gap between SQL types and Java types

As with Part 1 of this series of articles, I’ll be giving various tips and exercises on the way through.

Java COM

J D J F E A T U R E

Mixing the
Worlds of
Java &
SQL

SQL
Embedded in Java PART 2

JUNE 200042

Continuing our miniseries on SQLJ,
the standard for embedding
database SQL statements
in Java programs

Continuing our miniseries on SQLJ,
the standard for embedding
database SQL statements
in Java programs

WRITTEN BY EKKEHARD ROHWEDDER

43JUNE 2000

Java COM

Information
Architects

www.ia.com

Java COM

44 JUNE 2000

Get Into Position!
SQLJ provides two flavors of iterators. Last month we looked at named

iterators, in which you specify both the Java column types and the col-
umn name. Remember that the name also appears as the accessor func-
tion with which you retrieve the column value. This kind of iterator is
most “Java-ish,” and JDBC programmers immediately feel familiar with it.

Today I’ll be taking a closer look at positional iterators. They’re character-
ized by the order and by the Java types of their columns. Positional iterators
require neither the next() method nor the accessors of the named iterator.
They use a FETCH statement to advance to the next row and retrieve the col-
umn values into a list of variables all at once. Each variable in the INTO clause
corresponds to exactly one column in the SELECT list in the same order. This
will look familiar if you’re used to other languages with embedded SQL.

#sql { FETCH :p INTO :name, :salary };

Declarations for positional iterator types are even simpler than for
the named variety.

#sql iterator PosIter (String, Double);

In the processing loop for a positional iterator, you issue FETCH statements
to retrieve the next row of data into host variables. After a FETCH, the end-
Fetch() call returns true if the FETCH was successful and false if there was no
row left that could be fetched. Also remember to call close() on any iterator –
named or positioned – once you’re done using it or you’ll find yourself running
out of database resources. The following example uses a positional iterator:

String name = null;

Double salary = null;

PosIter p;

#sql p = { SELECT ename, sal FROM emp };

while (true) {

#sql { FETCH :p INTO :name, :salary };

if (p.endFetch()) break;

System.out.println(name + " would like to make " + (salary * 2));

}

p.close();

TIP: Even though it might look somewhat unusual, you should always employ the fol-
lowing template when using positional iterators:

Initialize var1, var2, …

while (true) {

#sql { FETCH :p INTO :var1, :var2, … };

if (p.endFetch()) break;

Process var1, var2, ...

}

Exercise: If you don’t follow the pattern above, things can go horribly
awry. See what goes wrong with the following:
1. Move the endFetch() test after the processing of the fetched.
2. Use the following while loop condition: while (!p.endFetch()).
3. Don’t initialize the variables before the loop.

Let’s Get Results – Functions First
We’ve already seen how results can be received from an SQL state-

ment when we used the SELECT-INTO statement. More often, results
from an SQL operation are returned through an SQLJ assignment state-
ment. Let's look at a call to an SQL function SYSDATE():

java.sql.Date today;

#sql today = { VALUES(SYSDATE()) };

System.out.println("The database thinks that today is "+today);

The VALUES(...) syntax is SQLJ-specific syntax for calling a stored
function. Such functions might also take arguments, as in the following
code snippet in which Next_Paycheck is an SQL stored function that
returns the date of the next paycheck on or after a given date:

String moreMoney;

#sql moreMoney = { VALUES(Next_Paycheck(:today)) };

(Note that we can receive an SQL DATE value in different formats in
Java – in our examples, as a java.sql.Date and as a java.lang.String.)

Are We Outmoded Yet? – Getting Into Procedures
In the foregoing discussion we glossed over the fact that host vari-

ables or expressions are used in different modes:
• IN: The value of the expression is sent to the database.
• OUT: The expression denotes a location and receives a value from the

database.
• INOUT: All of the above.

Host expressions, by default, have the mode IN – with the exception
of host expressions in INTO-lists and the return value of a stored func-
tion call, which have the mode OUT. In all other cases you have to explic-
itly prefix the host expression with the mode. SQL stored procedures can
have parameters with all three modes. The SQLJ syntax for calling a
stored procedure is illustrated in the following code fragment:

(See also Part 1 of this series [JDJ, Vol. 5, issue 5]).
• Positional Iterators

#sql modifiers iterator IteratorName(type1, type2, …);

IteratorName iter; Initialize var1, var2, …;
#sql iter = { SELECT …}
while(true) {
#sql { FETCH :iter INTO :var1, :var2,…} ;
if (iter.endFetch()) break;
process var1, var2, …
}
iter.close();

• Stored Function Calls
#sql result = { VALUES(stored_fun(:arg1, …)) };

• Stored Procedure Calls
#sql { CALL stored_proc(:invar, :OUT outvar, :INOUT inoutvar) };

• PSM Set Statement
#sql { SET :var = SQL Expression };

MORE SQLJ SYNTAX

COMING SOON: SCROLLABLE ITERATORS
Scrollable iterators added in the ISO version of SQLJ are very similar to JDBC 2.0

scrollable result sets. To get one you just declare that an iterator implements the
Scrollable interface:

#sql iterator ScrollIter implements sqlj.runtime.Scrollable
(String s, int i);

Given an instance siter of ScrollIter, you can use the familiar JDBC 2.0 move-
ment commands:

siter.absolute(15); … siter.relative(2); … siter.last();

There’s also a positional, scrollable flavor, of course. It supports the correspond-
ing FETCH syntax (FETCH ABSOLUTE, FETCH RELATIVE, FETCH LAST, …), which does
both movement and subsequent retrieval in one shot.

45JUNE 2000

Java COM

InetSoft Technology
www.inetsoftcorp.com

Java COM

46 JUNE 2000

int x = 10;

int y;

int z = 20;

#sql { CALL Toutes_Les_Modes(:x, :OUT y, :INOUT z) };

TIP: You must add OUT or INOUT modes to all host expressions in procedure arguments
that don’t have the mode IN. Otherwise you won’t see any values returned from the data-
base in these positions. A good way to ensure that you’ve specified all the required
modes is to run the SQLJ translator with online checking.

What Type Are You?
So far, we’ve used a bunch of Java types in our SQLJ programs without

having a clue which types are permitted and how they’re used. SQLJ includes
all of the JDBC types with some additional twists. Following is a list of JDBC-
supported Java types and how they’re used in SQLJ. Please see the sidebar
(“Coming Soon: Scrollable Iterators”) for JDBC 2.0-specific type support.
• Numeric types: This includes: int, Integer, long, Long, short, Short,

byte, Byte, boolean, Boolean, double, Double, float, Float and – just to
prove I don’t stutter – java.math.BigDecimal. So what’s the deal with
supporting both the primitive type (such as int, or double) and the
corresponding Java object type (such as Integer, or Double)? In SQLJ
the SQL NULL value always maps to Java null – and vice versa. Thus, if
you retrieve an SQL NULL value into an Integer, you receive a Java
null, but if you try to read it into an int, you’ll only get an sqlj.run-
time.SQLNullException, which is a subclass of SQLException.

• Character types: The Java type String represents these very well, thank
you. Note that the Java char and Character types aren’t supported by
SQLJ or by JDBC (besides, they could only hold a single character, any-
way). Also useful are the character streams sqlj.runtime.AsciiStream
and sqlj.runtime.UnicodeStream. One peculiarity about SQL is that
columns defined as SQL CHAR type are automatically blank-padded.
If you don’t get the same string back that you inserted into the data-
base, or if SQL comparisons with a given Java string fail mysteriously,
you should check the SQL type used in your table.

• Date and time types: These include java.sql.Time, java.sql.Timestamp
and java.sql.Date. Yes, that’s java.sql.Date and not java.util.Date –
don’t confuse the two!

• Raw types: Raw data can be represented as byte[], aka “byte-array,” or
– in stream form – as sqlj.runtime.BinaryStream, discussed next.

• Stream types: SQLJ provides new stream types sqlj.runtime.Binary-
Stream, sqlj.runtime.AsciiStream and sqlj.runtime.UnicodeStream for
wrapping a LONG (or LONG RAW) column in the database. These three
stream types implement a java.io.InputStream. When you retrieve a
LONG column, data in the same row prior to that column may be lost by
some JDBC drivers (such as Oracle’s). This imposes limitations on posi-
tional iterators (at most, one stream column is permitted, and it must
also be the last column of the iterator) and it requires extra care when
using named iterators (columns must be accessed in SELECT sequence).
You could use byte arrays or Strings to circumvent these problems.

TIP: SQLJ (and SQL) perform quite a few implicit conversions between SQL and Java types.
Although this can be useful, it may also lead to surprising and unexpected behavior. It is
strongly recommended that you run the SQLJ translator online to check your program. How-
ever, the type checking this provides isn’t adequate to guarantee the correct use of SQL types.

Exercise: Investigate conversions between Java types and SQL types:
1. Take a positional iterator that contains a String column and an int col-

umn. What happens if you flip the corresponding host variables in the
FETCH statement?

2. What happens if you flip the corresponding columns in the SELECT
statement?

Get It Your Way – With Customization
Vendors need to be able to customize the way SQLJ programs are execut-

ed for their database. Take the following PSM set statement, for example.

SET :x = 2 + 2

Against an Oracle database, however, this would have to be written as
follows.

BEGIN :OUT x := 2 + 2; END;

The Oracle customizer (see Figure 1) takes an existing serialized profile
and adds Oracle-specific information to it – in this case the new SQL text.
At runtime the actual database connection is used to determine which ven-
dor’s customization/runtime pair becomes activated. If no customization
exists for a given connection, SQLJ reverts to using the standard JDBC API.

Okay, let’s call it a day. Next time we’ll cover (almost) everything else
there is to know about SQLJ. I’ll teach you some neat translator tricks for
the command line. You’ll also be initiated into the mysteries of execution
contexts and connection contexts. Finally, we’ll examine how JDBC and
SQLJ can live in blissful harmony happily ever after. In the meantime, keep
your feedback, your answers to exercises and your questions coming!

AUTHOR BIO
Ekkehard Rohwedder hacked on JSQL before he had to rename it to SQLJ. In his past he earned a Dipl Inf
degree from Friedrich-Alexander Universität Erlangen-Nuremberg. Ekkehard leads SQLJ development at Oracle.

.SER FILE SECRETS REVEALED
Ever wonder what the .ser files contain? The serialized profiles provide full infor-

mation on all of the (static) SQL statements. You can take a peek at what is in them
with the -P-print command-line option.

sqlj -P-print *.ser

This lists for each SQLJ statement in your program:
• The SQL text of the statement
• The role of the statement and how it will be executed
• Descriptions of the parameters and of the result of the statement (if any), includ-

ing their SQL and Java types

JDBC 2.0 TYPES IN SQLJ
The SQLJ ANSI standard is based on JDBC 1.2. The forthcoming ISO version of

SQLJ, however, added support for new JDBC 2.0 types:
• BLOB, CLOB: Binary and character large objects
• REF: References to a STRUCT type
• Named SQL types: These SQL types use Java wrapper classes that know how to

read instances of the type from the database or write them back. In JDBC the cor-
respondence between wrapper classes and SQL type is kept in a Map object on
the connection. In SQLJ the correspondence is provided through a list resource
whose name is published on the connection context type. Three flavors of named
types are supported:
1. STRUCT: Structured SQL types. The Java wrapper class implements the

java.sql.SQLData interface.
2. DISTINCT: SQL distinct types that have an underlying build in SQL type. For

example, a SHOESIZE based on a numeric SQL type.
3. JAVA_OBJECT: SQL types based on Java types (see SQLJ, part 2). Instances of

such types could, among other things, be stored as serialized Java objects.

erohwedd@us.oracle.com

selects

selects

uses

translator Oracle
customizer

uses
0: SET :x=3

Profile x.ser

Oracle Customization
0: BEGIN :x:=3;END;

Oracle
Connection

Other JDBC
Connection

Oracle
SQLJ

Runtime
Generic

JDBC-based
SQLJ Runtime

Program x.sqlj
#sq. {SET :x=3};

FIGURE 1 Profile customization

47JUNE 2000

Java COM

Cape Clear
www.capeclear.com

But I digress. I thought about where I
could get the watch. The amazing thing is
that you can buy them in nearly every kind
of store – superstore, sports store, general
merchandise stores, even gas stations.
This is just an example of how the market
grabs a commodity and merchants make
it a part of their standard offering.

The Java application server market is
no different. Application servers enable
companies to build e-businesses by
offering them the tools to do so. They
started out by abstracting the interac-
tion with the operating system from the
application. Thus they created a new
execution environment for industrial-
strength distributed applications. The
application developers were saved the
pain of dealing with low-level system
programming details and could concen-
trate on solving the business problem

on hand. As the application server mar-
ket matured, several of these services
became commodity services. The appli-
cation server vendors embraced stan-
dards for the object programming mod-
els, transactions, Web access, security,
and so on. Consequently, applications
developed using application server ser-
vices became portable across applica-
tion servers. Java is responsible in a large
part for enabling this “cross-appserver”
application execution environment.

This is because Java provides a virtual
platform that is portable across different
hardware platforms. Thus Java was used
as a base for the object model (EJB) in
the application server market. With its
penetration into the middleware mar-
ket, Java has also become the base for
defining the APIs for the other app serv-
er services mentioned earlier. In fact, the
term Web application server is almost
synonymous with the term Java applica-
tion server (Microsoft’s application serv-
er suite notwithstanding).

The past year has seen a consolidation
of several companies that offered differ-
ent niche services in the app server mar-
ket. You may have followed this thread of
discussion in one of the previous E-Java
columns. The current generation of Java
application servers offers most of the fol-
lowing environments:
• Integrated development environ-

ments (IDEs)
• Scripting support
• J2EE development and execution

environments

The Need for Commerce Servers
Existing application server environ-

ments allow application developers to
develop the business logic for their spe-
cific applications. The next stage in the
evolution of application servers involves
the enhancement of the presentation
tier of distributed applications. Script-
ing using JSPs, ASPs and other similar
technologies allows the data generated
in the business logic tier to be presented
to the users of the application in a for-
mat specific to the business the applica-
tion was built for in the first place. How-
ever, scripting is still too low level to
completely design the front-end presen-
tation tier. As the demands of the appli-
cation become more complex, main-
taining the content via scripting tech-
niques becomes less manageable. These

demands arise as business processes are
exposed to the user of the application,
and an environment is needed for the
user to have a richer interaction with the
system. In addition, new requirements
arise for the development of reusable
components that can be applied to dif-
ferent businesses.

These requirements gave birth to
commerce servers, a new breed of appli-
cation server that offers services for
implementing business processes. These
servers are application packages that
encapsulate functionality for commerce
interaction such as buying and selling,
collaborations, marketing, shopping and
ordering, order management, and order
tracking and fulfillment. Commerce
servers combined with knowledge servers
form the basis for creating portals and
exchanges for dissemination of informa-
tion. These server environments provide
the means to enable personalization,
membership registration, role-based
access, usage trend analysis and market
analytics. IBM’s Net.Commerce, BroadVi-
sion’s Enterprise server, Vignette’s eBusi-
ness Platform, Allaire Spectra, Microsoft
Commerce Server and Oracle iStore are
examples of commerce servers. Com-
merce servers help in developing cus-
tomer-facing applications and are often
found in front-office business technolo-
gies. Typical markets targeted by these
servers are customer relationship man-
agement (CRM) and sales force automa-
tion (SFA) in the C2B space.

Commerce servers have existed in
the application server market for a
while, as stand-alone environments that
can be combined with other Java appli-
cation servers to provide complete cus-
tomer-facing solutions. The next logical
step in the evolution of Java application
servers is for the application servers to
offer a tighter integration with com-
merce servers. Going with the current
market trend of acquisitions and merg-

E - J A V A

B
efore we start on the technical front, let me tell you
about my latest acquisition. I recently went out to pur-
chase a watch. My wife wanted me to buy one of the
fancy ones, but I’m more excited by watches that have
all the features – stopwatch, backlight, barometer,
altimeter, everymeter – and the time displayed in BOLD
DIGITAL NUMBERS. I usually end up using maybe three
out of a hundred features, but at least I have them.

New developments in the marriage of Java application servers and commerce servers

WRITTEN BY
AJIT SAGAR

The Commerce in Java Application Servers

Personalization

Content
Management

User desktop
Workflows

Commerce components
(shopping cart, etc.)

Java
Server
Pages

Access
Control

Membership
RegistrationJava Web Server

Java Application Server

FIGURE 1 Commerce components using JSPs

Java COM

48 JUNE 2000

49JUNE 2000

Java COM

Hit
Software

www.hit.com

E - J A V A

Java COM

50 JUNE 2000

ers, this means that the same vendor
should offer traditional services offered
by Java application servers as well as
those offered by commerce servers. This
evolution is already taking place. Several
of the Java application server vendors
are now offering commerce services.

Commerce Services
Before we go into specific examples,

let’s examine some of the common ser-
vices usually associated with commerce
servers. Typical Java application servers
usually don’t include inherent support
for these services, though they often
work in collaboration with products that
do. Some services that should be provid-
ed by these servers are discussed below.
• Directory Services: Application servers

often provide support for directory ser-
vices, which are used for authentication
and access control for the applications
hosted by these servers. Most applica-
tion servers that support directory ser-
vices can work with an LDAP-based
directory server, which is used for
authenticating users and configuring
groups with roles around partners and
customers across multiple applications.

• Role-Based Access: Role-based securi-
ty describes a set of services that allow
you, the business manager, to create a
set of access rules or set permissions
to assign users to activities. Permis-
sions enable different users (or roles)
different access to content and activi-
ties in the system.

• Membership Registration: Member-
ship registration is closely tied with
directory services and role-based
access. Membership registration is a
feature of commerce servers that
enables the creation of member
groups for the purposes of authenti-
cating and authorizing users for using
the application in different ways. The
registration service causes the mem-
bers to get associated with a user

group, which in turn defines their
access permissions and membership
privileges. Thus the users get associat-
ed with a specific role.

• Personalization: Personalization is a
concept that addresses the ability of
an application to offer services cus-
tomized to the user’s preferences and
business processes. Personalization
includes the ability to perform
dynamic profiling and target informa-
tion to end users based on their inter-
ests and behavior. It’s also used to
track and store user information for
use in the delivery of customized con-
tent and product information. Most
personalization services offer rules-
based personalization that imple-
ments publishing rules that deliver
customized content based on user
preference information expressed in
the form of personalization rules.

Commerce Server Environments
Commerce servers offer program-

ming and configuration environments
used to define the business associated
with the application. Some examples of
such environments follow.
• Content management environments:

Content management encompasses
designing the content, logic, presenta-
tion and delivery of an application’s
Web front-end. This includes content
syndication, which allows a business
site to share content with other Web
sites regardless of format or applica-
tion environment. Outside content
can be brought into the application. At
the same time, a business’s site assets
can be exposed to site affiliates, allow-
ing them to subscribe and define the
delivery schedule and format.

• Commerce component building envi-
ronments: Commerce servers offer
sophisticated tools for building busi-
ness components that interact with the
underlying Java application servers.
Such components include standard
business components like shopping
carts and electronic payment modules.

• Messaging and workflow environ-
ments: Workflow engines and messag-
ing systems interact closely with
application servers to provide an exe-
cution environment for a business
process. Application servers provide
an environment for creating abstrac-
tions to a particular business task
inside a business process. Workflow
engines provide a mechanism that
allows nonprogrammers to define
and model their business process. A

single business process leverages one
or many business tasks encapsulated
by an application server. Application
servers use messaging systems to pro-
vide distributed asynchronous com-
munications in a publish/subscribe
environment, message queuing and
guaranteed delivery of messages.

Java: Not a Panacea
Java enthusiasts may say, “But we can

do all this in Java.” This is certainly true.
With the advent of J2EE, several of the
business environments can be built using
Java APIs and technologies. In fact,
JavaServer Pages are touted by Sun as the
solution to the presentation tier for e-
business applications. The idea is that
JSPs can be leveraged to create commerce
components for customer-facing busi-
nesses. Figure 1 illustrates how Java appli-
cation servers can use JSPs to create com-
merce components. JSPs will supposedly
separate the programmers from the Web
and business development teams. While
true, the level of effort involved in creating
such components and templates from
scratch is substantial. In addition, the
assumption is that, going with the open
standards trend, these components will
be reusable across different platforms
running Java. The underlying assumption
is that vendors will agree on what is a
reusable component beyond the mini-
mum standards and guidelines provided
by Java. Although Java is certainly gaining
the lead in the middle tier, it isn’t the only
player. Obviously, Microsoft and other
technologies have a fair share of the mar-
ketplace. And while Java technologies
suggest mechanisms for bridging with
other technologies, most of the time this
isn’t a feasible solution in an enterprise-
level solution.

The market already offers several
choices in mature products that offer
commerce components and services. A
better choice for application developers
is to combine these products with Java
application servers to provide a compre-
hensive solution to their business needs.
This is already taking place in the mar-
ket today. Several businesses are build-
ing the middle tier of their applications
based on Java technologies and are
using third-party market leaders for
other services needed by their applica-
tions. For example, Vignette’s eBusiness
Platform and BroadVision’s Enterprise
may be used to provide the commerce
services that supplement the middle-
tier services implemented in Java appli-
cation servers such as BEA’s WebLogic
application server. Figure 2 illustrates
how Java application servers can lever-
age third-party components.

Access
Control

Content
Management

User desktop
Workflows

Commerce components
(shopping cart, etc.)

Java
Server
Pages

Java Web Server

Membership
Registration

Java Application Server

Personalization

Third Party Components

FIGURE 2 Third-party commerce components

51JUNE 2000

Java COM

Sybase
wwwsybase.com/products/easerver

E - J A V A

AUTHOR BIO
Ajit Sagar is a

member of a leading
e-commerce firm in

Dallas,Texas, focusing on
Web-based e-commerce

applications and
architectures. A

Sun-certified Java
programmer, Ajit is also

the editor-in-chief of
SYS-CON’s

XML-Journal.

Java COM

52 JUNE 2000

Java App Servers with Commerce Services
As mentioned earlier, the next logical

step for Java application server vendors is
to partner with commerce servers to offer
comprehensive solutions for e-business-
es. Going one step further, these vendors
can combine to become one-stop shops
for creating end-to-end distributed busi-
ness applications. Figure 3 illustrates how
a Java application server may be used
with a commerce server. Such mergers
and acquisitions have been in fashion for
the past year and the combined product
suites are already available in the market
today. Some examples of these product
suites are discussed below.

IPLANET ECXPERT, PORTAL SERVER AND IPLANET
APPLICATION SERVER

The Sun–AOL (Netscape) alliance
has been combining their product offer-
ing to offer the iPlanet suite that offers
products ranging from Web servers to e-
business portals. Two of the recent offer-
ings in this product suite are the ECX-
pert and the Portal Server. iPlanet ECX-
pert is an Internet commerce exchange
application that enables an enterprise to
automate and manage the processes
that occur between organizations over
the Internet and existing private net-
works. The iPlanet Portal Server is a por-
tal platform that enables delivery of
content, services, business processes
and applications in personalized por-
tals. Features offered by the Portal Serv-
er include community creation and
management; multitiered portal per-
sonalization; creation of integrated con-
tent, applications and services through
customizable portal channels; secure
extranet access to portals by mobile/
remote employees and suppliers; and
integration with subscription-based
external content from AOL/Netscape.
These products leverage the iPlanet
Application Server (formerly the Net-
scape Application Server) to provide a
comprehensive suite of products.

BEA WEBLOGIC COMMERCE SERVER, APPLICATION SERVER

BEA’s traditional Java application server
offerings have been enhanced with their
commerce server, which enables deploy-
ment of personalized e-commerce appli-
cations that can be modified to meet cus-
tomer demands or take advantage of new
market opportunities. It provides online
catalog, shopping cart, inventory manage-
ment, order entry, order management and
shipping components as well as a product
recommendation engine that learns cus-
tomers’ behaviors over time. It offers busi-
ness controls for marketing professionals
that enable modification of the behavior of
e-commerce applications that define
interactions with individual customers –
including what promotions they receive,
what access they have and what content
they see. The same controls allow product
managers to manage product catalogs
dynamically and change pricing policies at
multiple levels. BEA’s commerce server
adds to their popular WebLogic Enterprise
Java application server.

ALLAIRE SPECTRA, COLDFUSION AND EGIPT APPLICATION
SERVERS

Unlike other vendors that started
with base middle-tier functionality and
worked their way to the front end,
Allaire’s products have expanded from
Web authoring tools to a complete enter-
prise application product suite. Their
flagship product is a non-Java applica-
tion server (ColdFusion) that enables
rapid deployment of Web sites. However,
in the past year (and this one) Allaire has
acquired technologies that should get
them entry into the Java application
server space, specifically LiveSoftware
(JRun) and Valto (Egipt). Since Allaire
started from the Web front-end, it isn’t
surprising that their commerce server,
Spectra, is built in-house. Spectra is a
packaged system for developing large-
scale Web applications. Powered by
ColdFusion application server, it spans
three crucial application areas – content
services, e-commerce and customer
management. Spectra can be used to
design the content, logic, presentation
and delivery of the application, workflow
and process flow automation, role-based
security, personalization, business intel-
ligence and data plus application syndi-
cation. Spectra uses the ColdFusion
application server to get to its underlying
Egipt Java application server.

Bluestone Total-e-Business Suite and
Sapphire Java Application Server

Bluestone recently announced Total-
e-Business product suite, a comprehen-
sive e-business solution for deploying e-

business that addresses foundational e-
business platform requirements includ-
ing infrastructure, integration, content
management and personalization. In
addition, it delivers a set of e-commerce
components typically required for sell-
ing goods and services on the Web – for
example, catalog management, shop-
ping cart and credit card processing.

SILVERSTREAM’S ADVANCED PORTAL FRAMEWORK AND
SILVERSTREAM JAVA APPLICATION SERVER

SilverStream recently announced an
advanced portal framework solution.
Based on their SilverStream application
server, it provides core features including
Personalization, Content Management, a
Component Framework and a library of
commerce components. SilverStream’s
Portal Framework is a part of the Silver-
Stream eBusiness Platform. The Portal
Framework offers core commerce fea-
tures such as user profiling, rules-based
personalization, workflow management,
caching and content management.

Trading Places
Back to my wristwatch. I ended up

buying one with lots of cool features.
The good thing about the wristwatch is
that all the parts are developed in-house
by the same vendor and are a part of the
same product. Thus, if my “dual-alarm”
feature breaks, I don’t have to figure out
how it interfaces with the rest of the cool
features. The manufacturer knows how
these things work together. However, in
the case of one-stop shop application
server vendors, it’s a different story.

The hooks into the Java middle tier for
all these commerce products are still the
Java enterprise APIs. However, when you
go out into the market for a comprehen-
sive product suite, you need to be aware
of some caveats. Most of these product
suites have been packaged recently and
are made up of several disjointed prod-
ucts. Just because a vendor offers the
complete solution doesn’t mean that the
integration between the products is com-
plete or painless. Vendors have gone
through several acquisitions to complete
the market story, to stay competitive and
to drive up the price of their stock. Inte-
grating these products into a single prod-
uct offering will take time, effort and
money. When you shop in the market for
a product suite suitable for your needs,
use due diligence to make sure you have
integration support from the vendor.
Sometimes it may be easier to buy
mature products from separate vendors
and do the integration as a part of your
application development.

ajit@sys-con.com

Commerce components
(shopping cart, etc.)

Content
Management

User desktop
Workflows

Personalization

Java Web Server

Java Application Server

Commerce
ServerCommerce Server

Access
Control

Membership
Registration

FIGURE 3 Java application server with commerce server

53JUNE 2000

Java COM

WebGain
www.webgain.com

Java COM

54 JUNE 2000

J A V A U T I L I T I E S

F
ile searches are traditionally accomplished by an operating
system utility. Most operating systems provide some sort of
search facility that allows the user to track down misplaced
or forgotten files. However, the facilities differ in their
approach for searching files – graphical versus command-line
interface, comprehensive versus limited search capability.

It’s functional as it stands – and you can add to it if you wish

WRITTEN BY
PAT PATERNOSTRO

A Java File Search Utility

If you work in multiple environ-
ments as I do, you become reliant on
search functionality available in one
environment that may not be supported
in another. This article details a Java file
search utility that provides a consistent
user interface and consistent function-
ality when searching for files.

Interface
The FindFile utility is made up of two

classes: FindFile and FindFileFrame,
located in FindFile.java. The FindFile
class (see Listing 1 on JDJ Web site) sim-
ply contains a main() method, which is
the entry point for the application. The
main() method instantiates the FindFile-
Frame class (see Listing 2 on Web site)
where the utility’s GUI is constructed
and where the main processing logic is
contained. The GUI is constructed using
panels combined with three layout man-
agers (java.awt.FlowLayout, java.awt.-
GridLayout and java.awt.BorderLayout)
in favor of the more flexible, yet arguably
more complicated and tedious java.-
awt.GridBagLayout layout manager. I
work predominantly on Win32 operating
systems (iWin9x, WinNT); therefore I
modeled the FindFile utility’s user inter-
face (see Figure 1) after the Win32 Find
utility (see Figure 2).

Implementation
The FindFileFrame class implements

the java.lang.Runnable interface and
two event listener interfaces: java.-
awt.event.TextListener and java.awt.-
event.ActionListener. The java.awt.-
event.TextListener interface method,
textValueChanged(), enables and dis-
ables the Find button based on the
length of text entered in the File Name
field. This prevents the user from start-
ing a file search without first typing in
something for a filename. The Look In

field is optional and directs the utility to
start the file search in the specified
directory. If the field is left blank, the
search is started in the current directory.
The search is limited to the specified
directory unless the Include Subfolders
checkbox is selected. The user is able to
specify a case-sensitive search by select-
ing the Case Sensitive checkbox.

The file search is performed in a sepa-
rate thread via the java.lang.Runnable
interface’s run() method to allow the user
the ability to interact with the utility. The
run() method calls the updateUI()
method with a true parameter to disable
several user interface components prior
to the search. The run() method then calls
the checkForFile() method, which recur-

FIGURE 1 The FindFile utility

FIGURE 2 The Win32 Find utility

55JUNE 2000

Java COM

Segue Software
www.segue.com

J A V A U T I L I T I E S

Java COM

56 JUNE 2000

sively cycles through any directories in
the list only if the Include Subfolders
checkbox is selected. The utility supports
wild card character (i.e., * and ?) file
searches through the use of a Java regular
expression shareware package called pat,
written by Steven R. Brandt and available
at www.javaregex.com. Because the pack-
age uses a wild card character syntax
slightly different from the format used for
Win32 and UNIX operating systems, the
entered filename is first converted to a
format the package understands via the
convert() method. If a file matching the
specified filename is found, it’s added to a
java.awt.List component along with the
file’s fully qualified path. As the search
progresses, the names of the directories
searched are displayed in a java.awt.Label
component located just below the search
results. When the search is completed, the
updateUI() method is called again, this
time with a false parameter to enable the
UI components.

Threading Issues
A started thread normally stops when

its run() method executes to completion.
In the case of this utility, however, a Stop
button is provided to allow the user to
cancel the file search at any time. Prior to
JDK 1.2.x, a thread was prematurely ter-
minated by calling the java.lang.Thread
class’s stop() method. However, because
of its unsafe behavior that method has
since been deprecated (see the JDK 1.2.x
javadoc HTML help file for the java.-
lang.Thread class’s stop() method to
view detailed information concerning
the method’s deprecation). Rather than
use a deprecated, unsafe method I chose
an alternative mechanism to terminate
the file search prematurely. When the
utility’s Stop button is clicked, the
boolean instance variable, searching, is
set to false, causing the file search to end
normally as this variable is interrogated
in the checkForFile() method’s for loop.

Performance
Typically, what is gained in portabil-

ity with a Java program is usually lost in
performance. However, with the advent
of the HotSpot compiler this is becom-
ing less of an issue. I compiled and test-
ed the FindFile utility using the three
major JDK releases (JDK 1.1.8, 1.2.2,
and 1.3.0 RC2) on a 450 MHz Pentium
III workstation with 96 MB of RAM run-
ning WinNT. The timings represent the
average number of seconds both utili-
ties took to search for the same file five
times in succession. The results are list-
ed in Figure 3. Your timings will vary
based on the JVM and operating system
in use, the operating system activity
and the speed of your workstation’s
processor.

Summary
The FindFile utility detailed here

provides a consistent user interface and
consistent functionality when used in
heterogeneous environments. The utili-
ty is quite functional as it stands; howev-
er, more features can easily be added if
desired.

AUTHOR BIO
Pat Paternostro is an

associate partner with the
Tri-Com Consulting Group
in Rocky Hill, Connecticut.

Tri-Com provides
programming services for

a wide variety of
development tasks. ppaternostro@tricomgroup.com

FIGURE 3 FindFile utility performance comparison

JVM/COMPILER VERSION
(compiled without optimization)

JDK 1.1.8
JDK 1.2.2

JDK 1.3.0 Release Candidate 2

FINDFILE UTILITY

24.6 seconds
16.4 seconds
15.8 seconds

WIN32 FIND UTILITY

15.2 seconds
15.2 seconds
15.2 seconds

InestSoft Technolgy
www.inetsoftcorp.com

57JUNE 2000

Java COM

HotDispatch.com
www.hotdispatch.com

Java COM

J D J F E A T U R E

O
ne unfortunate aspect of
the many enterprise APIs
and specifications that
Sun has released over the
last few years has been
the lack of information
about how some of these

APIs interact with one another. In particular, two very useful
specifications – the Java Messaging Service (JMS) and Enter-

prise JavaBeans (EJB) – have been released and already imple-
mented individually by many application server vendors. What

wasn’t considered in this process, at least at this stage, is how the
two would (or should) work together. Enterprise JavaBeans is a

server-side component architecture, which provides remote, dis-
tributed, secure objects with built-in transaction support. JMS is a

portable messaging service architecture and API that provides for
persistent, point-to-point or publish/subscribe messaging

with transaction support.
Communication with, or between, EJBs is a syn-

chronous mechanism of one client method (perhaps
another EJB) invoking a method on an EJB, with a
possible return value. JMS, on the other hand, has

both synchronous and asynchronous capabilities for
sending messages between clients. It would seem that

using JMS to pass asynchronous messages (or even
method invocations) between EJBs would be a useful

facility. Unfortunately, Sun has yet to tie these two
specifications together and there is currently no stan-
dard mechanism to use JMS with EJBs (although
there seems to be the promise of Sun delivering such

a spec in the not-too-distant future).
In this article I’ll show you how to circumvent this

problem with an adapter-style delegation model that
uses some of the inherent features of the
BEA/WebLogic application server and its implemen-

tation of both JMS and EJBs. This model, while making
use of a somewhat proprietary feature of the applica-

tion server, can easily be extended if so desired to a
more independent and portable mechanism by imple-

menting it as a stand-alone Java service.

Create a simple delegation model for

asynchronous method invocation of

EJBs via JMS – and bring these two

powerful enterprise technologies

together

58 JUNE 2000

WRITTEN BY SCOTT GRANT

59JUNE 2000

Java COM

Intuitive Systems
www.optimizeit.com

Java COM

60 JUNE 2000

If you want to test the example code included with this article, I
would recommend that you first obtain and install the latest release of
the BEA/WebLogic application server (this article is based on version
4.5.1). You can download a free 30-day trial copy from BEA at
www.bea.com.

The Java Messaging Service
The JMS is a set of interfaces implemented by vendors of message-

oriented middleware (MOM), application servers and database servers
that wish to support messaging within their products. JMS provides a
simple, common API for client applications to implement code that uses
portable messaging, against potentially any given number of underlying
messaging systems. (Because JMS is designed to be portable, it’s impor-
tant to realize that as a result, if you’re familiar with any given MOM
product, it isn’t certain that JMS will support every aspect of that prod-
uct.)

The primary concept in JMS is that of Destinations. A Destination is
nothing more than an association for message producers and message
consumers. Destinations break down into two types, Topics or Queues.
For the purposes of this article we’ll discuss only Queues, which imple-
ment point-to-point messaging. (Using a Topic to support the imple-
mentation described in this article should be a fairly easy substitution,
however.) Both Queues and Topics support persistence. An incoming
message will be stored in a persistent Queue until a QueueReceiver
connects to it and receives the message synchronously through a
receive() call, or passes it to a registered MessageListener. This latter
mechanism provides an asynchronous message delivery model. JMS
also provides support for transactions in a very basic form through the
standard Connection/Session creation mechanisms. Alternately, JMS
provides an XA implementation that is by default transacted and will
participate in the context of a distributed transaction. A full descrip-
tion of transaction support is beyond the scope of this article. If you’re
unfamiliar with the JMS, I recommend my tutorial “Using the Java Mes-

saging Service with BEA/WebLogic” published in the January 2000
issue (JDJ, Vol. 5, issue 1).

Enterprise JavaBeans
EJBs are remote distributed server-side components that have built-

in support for transactions and security. An EJB is a self-contained com-
ponent that runs within the confines of an EJB container. The container,
and its underlying server, are typically supplied by an application server
provider. It’s the duty of the container to manage any EJBs running with-
in it by taking responsibility for:
• Managing the state of an EJB
• Instantiating, pooling, removing and activating the EJB
• Making callbacks to the EJB to tell it to load or store its state (with con-

tainer-managed persistence, the container can even manage the load-
ing and storing of the EJB’s state)

• Thread safety (by default EJBs are single-threaded, and mustn’t create
their own threads)

Because EJBs are designed with inherent support for transactions,
the container also manages the coordination of the EJB with an underly-
ing Transaction Manager (the transaction may be a distributed transac-
tion that in turn is coordinated with various resource managers for
access to one or more databases).

Transaction management is therefore fairly transparent to EJB devel-
opers, requiring them to set a couple of DeploymentDescriptor attri-
butes to specify how the EJB will participate in the context of a transac-
tion (or even not at all). The DeploymentDescriptor allows the EJB to set
certain parameters at the time it’s deployed so the application server can
change aspects of how the EJB is handled by the container (such as how
it’s pooled, how it participates in a transaction or its security attributes)
without changing the EJB’s code, or having to recompile it.

EJBs also provide a security model that can control access at the
method level for any specific EJB. In this way you could have an EJB with

package jdj.article.jmsejb;

import javax.naming.*;
import javax.jms.*; // Import the javax.jms package
import java.util.Hashtable;

* JmsQueueManager.java
*
* An abstract base class that implements all the basic
* functionality for creating a JMS QueueReceiver or
* QueueSender. Includes all the necessary code for obtaining
* a JNDI naming Context, looking up the Queue and retrieving
* it, setting up the JMS Connection and Session,and creating
* the actual QueueReceiver and/or QueueSubscriber.
*
* This is extended by the ReceiverStartup and the
* JMSEjbClient classes, but it could also be used in a "has
* a" relationship by creating an implementation class and
* then contained as an attribute of our classes through a
* reference.
*
* @author Scott Grant
* @version 1.0 - 4/10/00
*

public abstract class JmsQueueManager implements IJmsEjbConstants
{

protected QueueConnectionFactory queueFx; // Our factory
protected QueueConnection conn; // Our connection
protected Queue queue; // Our queue
protected Queue tempQueue; // Our temporary queue
protected QueueSession session; // Our session
protected QueueReceiver receiver; / Our receiver
protected QueueSender sender; // Our sender

protected String jndiFactory;
protected String url;

protected String jmsFactory;
protected String queueName;
protected String principal;
protected String credential;

protected Context ctx; // our initial JNDI context

* Obtain an initial context from Weblogic through JNDI (this
* will be used to access the JMS factory and topic/queue
* information).

public JmsQueueManager(String jndiFactory, String url,
String queueName, String jmsFactory,
String principal, String credential)

{
this.jndiFactory = jndiFactory;
this.url = url;
this.queueName = queueName;
this.jmsFactory = jmsFactory;
this.principal = principal;
this.credential = credential;

}

protected void finalize() throws Throwable
{

closeJMS();
}

protected Context getInitialContext()
{

// Try and create a new initial context using our
// properties...

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, jndiFactory);
env.put(Context.PROVIDER_URL, url);
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, principal);
env.put(Context.SECURITY_CREDENTIALS, credential);

Listing 1

61JUNE 2000

Java COM

WebGain
www.webgain.com

Java COM

62 JUNE 2000

five methods, four of which were available to all users and one of which
was restricted to a manager only, or an administrator – constituting very
fine-grained security access control for an EJB.

One final aspect of EJBs is that by default they’re distributed compo-
nents. In this sense they’re remote and are accessed in the same way RMI
objects are. In fact, the various EJB interfaces (EJBHome, EJBObject)
extend the java.rmi.Remote interface and methods of the EJBObject-
derived remote interface throw java.rmi.RemoteException. EJBs are typ-
ically registered with JNDI (WebLogic does this through the
weblogic.properties file at startup). Access to the EJB is a JNDI lookup
operation for an EJB’s home interface, which then acts as a type of facto-
ry for creation or location of the actual EJB itself.

One important thing to remember with EJBs is that you’re always
dealing with a “remote” stub class, you’re never accessing the actual EJB
directly (that is, you’re never directly accessing the class that actually
implements the functionality provided by the EJB – usually referred to as
the “bean” class). Access to the actual functionality of the EJB is through
calls to the stub class (which implements the EJB’s remote interface).
The stub communicates with the bean class through the container. The
container controls access to the bean class and manages calls to the EJB,
usually within a transaction context. It is this aspect of EJBs, though –
their distributed, remote nature – that leads us to the problem of using
EJBs with the JMS.

The Problem: Using JMS with EJBs
The problem in trying to use JMS with EJBs derives from the way you

access an EJB to perform a method invocation on the bean. Specifically,
the problem concerns the fact that an EJB doesn’t behave like a standard
“daemon service” or remote object in the sense that it isn’t continuously
up and running and waiting for access. EJBs are available during an
access, but at any point after the access – after a specific timeout period
or when the last reference to a bean is released – it can be passivated and
put back into an available pool of beans by the container. Remember that

you never have access to the bean itself, but only to a client-side stub
class that implements the EJB’s remote interface. A reference to the stub
doesn’t guarantee that the bean is active on the server or available on it.
(The bean may have been passivated due to a timeout, for example, or
the object pool might be at its maximum.) The key point here is that the
EJB isn’t guaranteed to be constantly running and available simply
because your code might have a reference to the EJB’s remote interface.

On the messaging side, JMS provides a mechanism to send and
receive messages to and from a Destination. Let’s take the example of
one specific Destination type, a Queue. You create a QueueConnection
and QueueSession, and from the QueueSession you ultimately create a
QueueSender or QueueReceiver. The QueueSender is used to send a JMS
message to a Queue. Any QueueReceiver connected to the same Queue
can retrieve incoming messages on the Queue synchronously or asyn-
chronously. For a message to be delivered asynchronously, a QueueRe-
ceiver must have a registered MessageListener to which it can pass an
incoming asynchronous message. An object that wishes to be notified of
asynchronous messages must then implement the MessageListener
interface and its single method onMessage(). Once this object is regis-
tered with the QueueReceiver for a specific Queue, any incoming mes-
sage on that Queue will be passed to the onMessage() implementation of
that object as a callback from JMS.

Sending a JMS message to a Queue is a simple matter for an EJB.
When a method on an EJB is invoked, the bean can simply create the
appropriate JMS Queue objects, retrieve the Queue from JNDI and ulti-
mately send a specific JMS message to the Queue. But what happens if
we want our EJB to receive a JMS message? At first glance it might seem
that you could simply implement the MessageListener interface in your
EJB’s bean class, implement the onMessage() method and register this
with a QueueReceiver. But this implementation violates one of the major
rules of EJBs and is therefore illegal and potentially disastrous. Why?

It all comes back to two major points discussed above: an EJB bean
class should never be accessed directly, but only through its remote
interface; and the Container manages the availability of an EJB.

try
{

// Try and create a new initial context using
// our properties...
Context context = new InitialContext(env);
return context;

}
catch(NamingException e)
{

System.out.println("getInitialContext: Could not
obtain initial naming context");
e.printStackTrace();
return null;

}
catch(Exception e)
{

System.out.println("getInitialContext: Unknown
exception trying to obtain initial naming context");

e.printStackTrace();
return null;

}
}

* Initialize JMS - create initial JMS resources,
* start connection, etc.

protected void initializeJMS(String type, MessageListener
listener, boolean transacted)
{

try
{

if (ctx == null)
ctx = getInitialContext();

if (ctx != null)
{

// Get the default queue connection

// factory...Destinations (Queues and
// Topics) and ConnectionFactory objects are
// administered objects - you retreive them
// from the Weblogic Application Server via JNDI.
queueFx = (QueueConnectionFactory)
ctx.lookup(jmsFactory);

// Get a QueueConnection from the QueueCon-
// nectionFactory
conn = queueFx.createQueueConnection();

// Get a QueueSession - auto-acknowledge -
// and use the parameter to
// determine if it is transacted or not...
session = conn.createQueueSession(transact-
ed, Session.AUTO_ACKNOWLEDGE);

// Get the Queue from JNDI...Queue is an
// administered object
queue = (Queue) ctx.lookup(queueName);

if ((type.equals(RECEIVER) ||
type.equals(SENDER_RECEIVER)) &&
listener != null)

{
// Create a Receiver for the Queue...
receiver = session.createReceiver(queue);

// Set the listener (this class)
receiver.setMessageListener(listener);

}

if (type.equals(SENDER) ||
type.equals(SENDER_RECEIVER))
{

sender = session.createSender(queue);
}

63JUNE 2000

Java COM

Buzzeo
www.buzzeo.com

Java COM

64 JUNE 2000

If you implement the MessageListener in the bean class, JMS is
essentially calling directly into the EJB and not through the remote inter-
face. Thus JMS is bypassing the container and directly making an invo-
cation on the bean class. Because the container is managing not only the
EJB but also transactions (as well as thread safety), it would be a poten-
tially catastrophic operation if JMS were suddenly to call into your bean
class directly while it’s in the middle of a transaction or other operation.
In addition, unless the EJB bean class was actually available, it wouldn’t
be possible to register the bean class with the QueueReceiver until the
bean was in an instantiated state. (Also, depending on how such a sce-

nario was coded, JMS might be calling into a bean instance while it was
in the container’s object pool, as well as calling into activated instances
that were in communication with a client.) Figure 1 illustrates this kind
of illegal use.

The Solution:WebLogic Startup Classes
The way to solve this problem is to use a delegation model. In the

model I’m going to present we’ll implement a delegator class (a kind of
adapter) for receiving and forwarding JMS messages to an EJB. We can

Enterprise
JavaBean

EJB Bean class
is directly registered as
JMS MessageListener

Client accesses EJB
through Stub — Legal

Access of EJB

JMS receives an incoming
Message and calls directly into

Bean class instance.
Illegal access of EJB and
potentially catastrophic!

EJB CONTAINER

WebLogic Application Server

Client Application
Accessing EJB

EJB Stub
(Implements

Remote Interface)

Java
Messaging

Service

FIGURE 1 Illegal use of JMS with EJB

Enterprise
JavaBean

Java
Messaging

Service

JMS receives incoming
Message and invokes

MessageListener
"onMessage" in
Startup Class

Startup Class
accesses EJB

through Stub and
invokes EJB

method
asynchronously —

Legal Access
of EJB

Startup Class Registers
as JMS MessageListener

Loaded and instantiated by Application Server

EJB CONTAINER

WebLogic Application Server

WebLogic Startup Class
(Delegator)

Client Stub
(Implements

Remote Interface)

FIGURE 2 Legal use of JMS with EJB via delegation model

// Start connection...
conn.start();

}
else
{

System.out.println("initializeJMS: InitialCon-
text was null");
return;

}
}
catch(NamingException e)
{

System.out.println("initializeJMS: NamingException
was thrown");

e.printStackTrace();
}
catch(JMSSecurityException e)
{

System.out.println("initializeJMS: JMSSecurityExcep-
tion was thrown");

e.printStackTrace();
}
catch(JMSException e)
{

System.out.println("initializeJMS: JMSException was
thrown");

e.printStackTrace();
}
catch(Exception e)
{

System.out.println("initializeJMS: Unknown exception
trying to obtain initialize JMS");

e.printStackTrace();
}

}

* Close down JMS - stop the connection, etc.

protected void closeJMS()
{

if (conn != null)
{

try
{

conn.stop();
if (sender != null)

sender.close();

if (receiver != null)
receiver.close();

if (session != null)
session.close();

conn.close();
}
catch(JMSException e)
{

System.out.println("closeJMS: JMSException
thrown while trying to close connections");
e.printStackTrace();

}
catch(Exception e)
{

System.out.println("closeJMS: An unknown
exception occurred while trying to close connections");

e.printStackTrace();
}

}
}

* sendMessage
*
* Send a JMS Message.

protected void sendMessage(Message msg)

65JUNE 2000

Java COM

Tidestone
Technologies

www.tidestone.com

Java COM

66 JUNE 2000

implement this delegation class using a proprietary feature of the
WebLogic application server called “startup classes.” A startup class is
simply a Java class that implements the weblogic.common.T3StartupDef
interface from the WebLogic packages.

A startup class is registered in the weblogic.properties file and, as the
name implies, will be loaded by the WebLogic server upon startup and
run within the application server’s VM instance. The T3StartupDef inter-
face defines one method called startup(), which is passed a String iden-
tifier and a Hashtable that contains any parameters you wish to pass to
your startup class – these parameters are set in the weblogic.properties
file. The startup() method is the equivalent of a main() method, in a
sense, and it will be called by the WebLogic server when your startup
class is instantiated.

Next we need to create a special Queue (see the WebLogic documen-
tation for details on setting up the Queue for the WebLogic application
server) in the WebLogic server for our incoming JMS messages. We’ll use
this special Queue when sending messages intended for an EJB via the
startup class delegator. In turn, the startup class is set up to listen on this
same Queue for JMS messages intended for an EJB. We’ll use this model
for two types of EJB access. The first is a direct delegation model in which
we’ll pass the incoming JMS message on to an onMessage() method in
our example EJB. The second is an asynchronous method invocation on
an EJB via a JMS message (see Figure 2). Both forms actually use the
same underlying code, as you will see.

Using the Delegation Model
Our startup class should contain code within its startup() method

that initializes JMS and implements the JMS MessageListener interface
and its onMessage() method. Listing 1 shows the code for our
JmsQueueManager class – this class implements all of the functionality
required to create a JMS QueueConnection, QueueSession, QueueRe-
ceiver and QueueSender. It also provides utility methods that retrieve a

Queue via JNDI and shuts down the JMS connection in its finalize()
method.

The important method in JmsQueueManager is initializeJMS(). This
initializes JMS, creates the JMS QueueConnection, QueueSession,
retrieves the Queue through JNDI and creates the QueueSession and/or
QueueReceiver.

We extend this base class in our WebLogic startup class. This gives
our startup class all the JMS functionality it needs to manage a JMS Con-
nection. Our startup class also implements the JMS MessageListener
interface and its onMessage() method. Once JMS is successfully initial-
ized through the base class code, any incoming JMS messages sent to
our Queue will cause an invocation of the onMessage() method in the
startup class. The onMessage() method, the core of the startup class, is
where the actual delegation occurs. We do the delegation through the
use of Java’s reflection mechanism and by parsing out method names
and parameters from the contents of a JMS message. The startup class is
shown in Listing 2.

Asynchronous Method Invocation with JMS
The onMessage() method of the startup class extracts predefined para-

meters from an incoming JMS message. In the code listing this message is
assumed to be a JMS MapMessage that can contain multiple name/value
pairs. A value is stored in conjunction with a String “name.” You look up the
value by passing the String name to an appropriate method, based on the
type of the value – for instance, “getString(String name)” will look for a
String value based on “name.” It uses the values of these parameters to
obtain the EJBHome class, first. This is important since we need the EJB-
Home to either create or locate an EJB. Then, using the Java reflection
mechanism, we utilize additional JMS message parameters to determine
the type of parameters for two methods; the EJBHome’s create() method
(this could also support an EntityBean’s findByPrimaryKey() method) and
then the actual method to be invoked on the remote interface.

{
try
{

msg.setJMSDeliveryMode(DeliveryMode.PERSISTENT);
sender.send(msg); // default behavior

}
catch(JMSException e)
{

System.out.println("initializeJMS: JMSException try-
ing to send message to queue");

}
}

* createMapMessage
*
* Creates a MapMessage - delegates to
* the session version of this method.

protected MapMessage createMapMessage()
{

try
{

return session.createMapMessage(); // default behavior
}
catch(JMSException e)
{

System.out.println("createMapMessage: JMSException
trying to create MapMessage");

}

return null;
}

// You could implement all the additional "createXXXMes0
// sage()" delegator methods here, if you wanted to flesh
// out this class...

}

package jdj.article.jmsejb;

import javax.naming.*;
import javax.jms.*; // Import the javax.jms package
import javax.ejb.*;
import java.util.*;
import java.lang.reflect.*;
import java.rmi.RemoteException;

import weblogic.common.*;

* JmsEjbReceiver.java
*
* Implements Weblogic Start-Up class that receives JMS
* Messages on an incoming Queue using Weblogic's JMS
* implementation.
*
* @author Scott Grant
* @version 1.0 - 4/10/00

public class ReceiverStartup extends JmsQueueManager
implements MessageListener,

T3StartupDef
{

// Note: These parameters could be passed in the Hashtable
// arguments to the Weblogic Start-Up Class via the
// "weblogic.properties" file...I have hard coded them here...
public static final String JNDI_FACTORY =
"weblogic.jndi.WLInitialContextFactory";
public static final String URL = "t3://localhost:7001";
public static final String JMS_FACTORY =
"javax.jms.QueueConnectionFactory";
public static final String QUEUE =
"jdj.article.jmsejb.ejbMessageQueue";
public static final String PRINCIPAL = "system";
public static final String CREDENTIAL = "password";

Listing 2

67JUNE 2000

Java COM

Flashline
www.flashline.com

Java COM

68 JUNE 2000

In the code listing I’ve hard-coded the String “names” for the MapMessage’s
values for clarity (these could be turned into “final static” constants). This
shows how you can use a single JMS message to package all the information
needed for the delegator so it can locate the EJBHome, use reflection to create
the EJB and – if the remote interface stub class is successfully retrieved – invoke
a method on the stub class passing in parameters from the MapMessage. Thus
the delegation startup class is making asynchronous invocations against the
EJB. The code for the ReceiverStartup class in Listing 2 shows how to do this.

This mechanism uses some support methods to obtain the Class of
the parameters for both a create method and an EJB’s remote interface
method, and to determine and set the parameter’s values. Once these
have been created, the method is actually invoked through reflection.

Delegating the JMS Message
An important point to note is that we use the same block of code in

onMessage() to invoke a method asynchronously on an EJB and to pass
on a JMS message to an EJB.

The code in Listing 3 shows how we would do this. This is a simple
client class that can be used to test our delegator. It creates two separate
JMS messages. The first sets its parameter to type “message.” Doing this
instructs the ReceiverStartup onMessage() code to look for the method
name in the remote interface stub, but to pass on the JMS message to the
EJB’s method (this method, of course, must take a parameter that is a JMS
message). In this way the ReceiverStartup class performs what appears to
be a simple pass through of the message to the EJB. The second message
in the client code listing sends a message with multiple parameters that
invokes a simple EJB method called testMethod() that takes an integer
and String as parameters. Thus we have one block of code in the Receiver-
Startup class that can be used for any asynchronous EJB invocation,
including passing a JMS message on to the EJB itself (although you must
add additional parameters to the message so that the EJB can be located).

Some additional features that could be added to the code would be
dealing with return values using the JMSReplyTo property of a JMS mes-
sage (not implemented in the code listings in this article – I leave you to
investigate this for yourself). You could specify a “return value” Queue on
which you could pass back a message with a unique identifier and the
returned results from the method that was invoked. Also, in the code
listings I use a JMS MapMessage that requires us to add the specific
name/values that we’ll need to locate the EJB and invoke a method on it.
This could be enhanced by wrapping or extending the base JMS message
classes to add methods to handle these unique name/values, while leav-
ing the underlying JMS message alone.

Summary
There’s little doubt that EJBs and JMS are both very useful and pow-

erful enterprise technologies when used independently. Although Sun
has yet to define how these two specifications should interact, the
model presented here demonstrates one solution to the current prob-
lem developers face when trying to use these technologies together. It’s
my hope that the ideas presented in this article demonstrate the poten-
tial for using JMS and EJBs in the enterprise. I encourage you to experi-
ment with the concepts presented and create your own EJB and JMS
solutions.

AUTHOR BIO
Scott Grant is chief architect and lead developer for CascadeWorks, Inc., a San Francisco-based ASP
company providing B2B solutions. A Sun-certified Java developer with 15 years of diversified engineering
experience, Scott previously pioneered Java enterprise e-service solutions at another Bay Area startup
company.

private T3ServicesDef serv; // Part of Weblogic Start-Up
class support

public ReceiverStartup()
{

super(JNDI_FACTORY, URL, QUEUE, JMS_FACTORY, PRINCI-
PAL, CREDENTIAL);

}

// Weblogic Start-Up Class

public void setServices(T3ServicesDef s)
{

serv = s;
}

* startup
*
* This is part of the Weblogic T3StartupDef
* interface
*
public String startup(String name, Hashtable args) throws
Exception
{

ctx = getInitialContext();

if (ctx != null)
initializeJMS(RECEIVER, this, false); // Not
using transactions

else
throw new NamingException("ReceiverStartup -
initializeJMS: Naming Exception was thrown");

return "ReceiverStartup listening...";
}

// JMS Items

* Implements the onMessage method of the MessageListener
* interface. This is the call back method used by JMS to

* pass us messages on the queue our which we're
* registered with...

public void onMessage(Message msg)
{

System.out.println("ReceiverStartup: Received incoming
JMS message...");

try
{

String msgType = msg.getJMSType();
if (msg instanceof MapMessage &&
msgType.equals(JMSEJB_MESSAGE))
{

MapMessage mapMsg = (MapMessage)msg;
String homeName = mapMsg.getString("HomeName");
String createName = mapMsg.getString("CreateName");
int createParams = mapMsg.getInt("CreateParams");
String methodName = mapMsg.getString("MethodName");
int methodParams = mapMsg.getInt("MethodParams");

System.out.println("homeName: " + homeName);

if (ctx == null)
ctx = getInitialContext();

if (ctx != null)
{

try
{

// Get the class type and parameters
// for the EJBHome create method...

System.out.println("Getting create
class types...");
Class[] createTypes = get

ClassTypesFromMessage((MapMessage)msg, createParams, "Cre-
ateParam", "CreateParamType");

System.out.println("Getting create
arguments and types...");
Object[] createArgs = getArguments-

FromMessage((MapMessage)msg, createParams, "CreateParam",

sgrant@cascadeworks.com

69JUNE 2000

Java COM

Modis Solutions
www.idea.com

Java COM

70 JUNE 2000

"CreateParamType");

// Get the class type and parame-
// ters for the EJBObject (stub)
// method to invoke...
System.out.println("Getting method
class types...");
Class[] methodTypes = get-

ClassTypesFromMessage((MapMessage)msg, methodParams, "Method-
Param", "MethodParamType");

System.out.println("Getting method
arguments and types...");
Object[] methodArgs = getArguments-

FromMessage((MapMessage)msg, methodParams, "MethodParam",
"MethodParamType");

System.out.println("Looking up
object class name...");

// Find our home class through JNDI...
Object obj = ctx.lookup(homeName);
Class homeClass = obj.getClass();

// Find the create method...
Method methodCreate =

homeClass.getMethod(createName, createTypes);

System.out.println("Invoking create
method...");

// Invoke the create method...
Object ejb =

methodCreate.invoke(obj, createArgs);

System.out.println("Invoking method
" + methodName + "...");

// Find the EJB method in the JMS
// Message...
Method methodCall = ejb.get-

Class().getMethod(methodName, methodTypes);

// Invoke the EJB method...
methodCall.invoke(ejb, methodArgs);

}
catch(InvocationTargetException e)
{

System.out.println("ReceiverStart-
up: InvocationTargetException was thrown");

}
catch(NoSuchMethodException e)
{

System.out.println("ReceiverStart-
up: NoSuchMethodException was thrown");
}
catch(IllegalAccessException e)
{

System.out.println("ReceiverStart-
up: IllegalAccessException was thrown");
}
catch(Exception e)
{

System.out.println("ReceiverStart-
up: An exception was thrown");

}
}
else

System.out.println("ReceiverStartup:
onMessage: Failed to obtain initial naming context");

}
}
catch (JMSException e)
{

System.out.println("ReceiverStartup: onMessage:
JMSException was thrown");

e.printStackTrace();
}

}

* getClassTypesFromMessage
*

* Returns an array of Class types from a MapMessage
* which contains a list of parameters for an EJB method call.

public Class[] getClassTypesFromMessage(MapMessage msg,
int params,

String argName, String typeName) throws JMSException
{

Class[] types = new Class[0];

if (params > 0)
{

types = new Class[params];

for (int i = 0; i < params; i++)
{

String type = msg.getString(typeName + i);
if (type.equals("String"))
{

types[i] = String.class;
}
else if (type.equals("int"))
{

types[i] = int.class;
}
else if (type.equals("long"))
{

types[i] = long.class;
}
else if (type.equals("float"))
{

types[i] = float.class;
}
else if (type.equals("double"))
{

types[i] = double.class;
}
else if (type.equals("short"))
{

types[i] = short.class;
}
else if (type.equals("byte"))
{

types[i] = byte.class;
}
else if (type.equals("object"))
{

// Extract any type of object...
Object obj = msg.getObject(argName + i);
types[i] = obj.getClass();
System.out.println("Object instance: "
+ obj.getClass().getName());

}
else if (type.equals("message"))
{

types[i] = Message.class;
}
else

System.out.println("Unknown parameter
type");

}
}

return types;
}

* getArgumentsFromMessage
*
* Returns an array of Object's from a JMS MapMessage
* that are extracted as parameters for an EJB method
* call.

public Object[] getArgumentsFromMessage(MapMessage msg,
int params,

String argName, String argType) throws JMSException
{

Object[] args = new Object[0];

if (params > 0)
{

args = new Object[params];

for (int i = 0; i < params; i++)

71JUNE 2000

Java COM

Persistence
www.persistence.com

Java COM

72 JUNE 2000

{
String type = msg.getString(argType + i);
if (type.equals("String"))
{

String temp = msg.getString(argName + i);
args[i] = temp;

}
else if (type.equals("int"))
{

int temp = msg.getInt(argName + i);
args[i] = new Integer(temp);

}
else if (type.equals("long"))
{

long temp = msg.getLong(argName + i);
args[i] = new Long(temp);

}
else if (type.equals("float"))
{

float temp = msg.getFloat(argName + i);
args[i] = new Float(temp);

}
else if (type.equals("double"))
{

double temp = msg.getDouble(argName + i);
args[i] = new Double(temp);

}
else if (type.equals("short"))
{

short temp = msg.getShort(argName + i);
args[i] = new Short(temp);

}
else if (type.equals("byte"))
{

byte temp = msg.getByte(argName + i);
args[i] = new Float(temp);

}
else if (type.equals("object"))
{

Object obj = msg.getObject(argName + i);
args[i] = obj;

}
else if (type.equals("message"))
{

args[i] = msg;
}
// You could add other types here...Object,etc...
else

System.out.println("Unknown parameter type");
}

}

return args;
}

}

package jdj.article.jmsejb;

import javax.jms.*;
import javax.naming.*;

* JmsEjbClient
*
* This is our client class. It extends the base JmsQueueMan-
* ager to handle the creation of the JMS connection, session,
* and QueueSender.
*
* It creates two JMS MapMessages. The first is sent to the
* EJB's "onMessage" method through simple delegation. The
* second message is actually used to call a method on the EJB
* asynchronously via a JMS message - both cases are handled
* by the ReceiverStartup Weblogic startup class.
*
* @author Scott Grant
* @version 1.0 - 4/10/00

public class JmsEjbClient extends JmsQueueManager
{

public static final String JNDI_FACTORY =
"weblogic.jndi.WLInitialContextFactory";
public static final String URL = "t3://localhost:7001";

public static final String JMS_FACTORY =
"javax.jms.QueueConnectionFactory";
public static final String QUEUE =
"jdj.article.jmsejb.ejbMessageQueue";
public static final String PRINCIPAL = "system";
public static final String CREDENTIAL = "password";

public JmsEjbClient()
{

super(JNDI_FACTORY, URL, QUEUE, JMS_FACTORY, PRINCI
PAL, CREDENTIAL);

}

public static void main(String[] args)
{

JmsEjbClient client = new JmsEjbClient();
client.initializeJMS(SENDER, null, false);

MapMessage msg = client.createMapMessage();
try
{

// Create a MapMessage and send it to the Queue
msg.setJMSType(JMSEJB_MESSAGE);
msg.setString("HomeName",
"jdj.article.jmsejb.JmsEjbExampleHome");
msg.setString("CreateName", "create");
msg.setInt("CreateParams", 0);

// We are sending this method to the "onMessage"
// method of the EJB, so we set one parameter
// which is of type "message". This is a special
// case and the ReceiverStartup will interpret
// this as delegation - it will pass the actual
// JMS Message itself, on to this method (onMes-
// sage) of the EJB as the parameter.
msg.setString("MethodName", "onMessage");
msg.setInt("MethodParams", 1);
msg.setString("MethodParamType0", "message");
msg.setString("StringMessage", "This is my test

message string sent to the EJB onMessage method...");

client.sendMessage(msg);

// Now send a method invocation with Params...

msg = client.createMapMessage();
msg.setJMSType(JMSEJB_MESSAGE);
msg.setString("HomeName",
"jdj.article.jmsejb.JmsEjbExampleHome");
msg.setString("CreateName", "create");
msg.setInt("CreateParams", 0);

// We are sending this message to ReceiverStart-
// up as a method
// invocation. So we set the method name, and
// the parameter types, and values. The
// ReceiverStartup class will use Java's reflec-
// tion mechanism to find this method on the
// EJB, and invoke it, passing
// in the parameters as we've specified them.
// This demonstrates using a Weblogic startup
// class as a delegator for asynchronous
// method invocation on an EJB...
msg.setString("MethodName", "testMethod");
msg.setInt("MethodParams", 2);
msg.setString("MethodParamType0", "int");
msg.setInt("MethodParam0", 1);
msg.setString("MethodParamType1", "String");
msg.setString("MethodParam1", "This is my test

message string sent to the EJB testMethod as method parameter...");

client.sendMessage(msg);
}
catch(JMSException e)
{

System.out.println("JmsEjbClient: JMSException
was thrown");

}
}

}

Listing 3

73JUNE 2000

Java COM

Elixir
Technology

www.elixirtech.com/download

Java COM

74 JUNE 2000

J A V A & O R A C L E

I
nformation repositories are essential. They allow data to be
shared within or outside an organization, bringing us closer to
the reality of the paperless office.

Using Java and JDBC to store and retrieve multimedia information from a relational database

WRITTEN BY
SAMIR SHAH

Building Multimedia Repositories

With the toolset shown in Table 1, you
can build an enterprise-class, scalable
Web-enabled repository that fully incor-
porates various forms of media. Docu-
ment files, photographs, video clips and
sound files can easily be included in the
repository using Java and Oracle8i’s LOB
(Large Objects) data types.

In this article I’m going to focus on how
you build a repository to store and search
documents such as Microsoft Word, and
HTML and XML files stored in a LOB col-
umn of a database table. The example used
here populates the repository with
Microsoft Word résumés, indexes it using
Oracle Intermedia and reads it using Java
streams from a servlet (see Figure 1).

Benefits of Java and Oracle8i
Building repositories using Java and

Oracle8i has several benefits. The docu-

ments inherently take advantage of the
transaction management and ACID
(atomicity, concurrency, integrity and
durability) properties of the relational
database, which means that changes to
an internal LOB can be committed or
rolled back. Moreover, associated appli-
cations can seamlessly take advantage of
database features such as backup and
recovery. This makes things easier for the
system administrators, who no longer
have to perform separate database and
file system backups for relational infor-
mation and documents. All data housed
in the database, whether structured
(relational) or unstructured (document
files), can be written, searched and
accessed using a single industry stan-
dard interface – SQL. These SQL state-
ments can be executed from Java using
JDBC (Java Database Connectivity).

Working with Large Objects
Oracle8i supports several types of LOB

columns. One type, a BLOB (Binary Large
Object), can house binary information
such as audio, video, images and docu-
ments internally within the database. Each
row can store up to 4 gigabytes of data. I
used the BLOB data type to store the
Microsoft Word résumés in my example.

The Oracle database stores a locator
inline with the data. The locator is a point-
er to the actual location of the data (LOB
value). The LOB data can be stored in the
same table or a separate one. The advan-
tage of the locator is that the database
doesn’t have to scan the LOB data each
time it reads multiple rows because only
the LOB’s locator value is read; the actual
LOB data is read only when required.

When working with Java and LOBs,
first execute the SELECT statement to
get the LOB locator, then read or write
LOBs using JDBC. (Oracle JDBC driver’s
type extension classes from oracle.sql
package is used to read and write from
an Oracle database.) The actual LOB
data is materialized as a Java stream
from the database, with the locator rep-
resenting the data in the table. The fol-
lowing code reads the résumé of an
employee whose employee number,
7900, is stored in a LOB column called
résumé in the sam_emp table.

Statement st = cn.createStatement();

ResultSet rs = st.executeQuery

("Select resume from sam_emp where

empno=7900");

rs.next();

oracle.sql.BLOB blob=((OracleResult-

Set)rs).getBLOB(1);

InputStream is=blob.getBinary-

Stream();

Populating the Repository
The documents can be written to

LOB columns using Java, PL/SQL or a
bulk utility called Oracle SQL*Loader. To
insert a new row, do the following:
1. Execute the SQL insert statement with

an empty BLOB.
2. Query the same row to get the locator

object. Use this locator to write your
document to the LOB column. Note:
Java streams are employed to write
the documents to the LOB column.

TABLE 1 Toolset for this article

• JDEVELOPER 2.0 WITH JDK 1.1.7
• ORACLE 8.1.5 JDBC THIN DRIVER
• ORACLE8i (8.1.5) ENTERPRISE SERVER
• JAVA WEB SERVER 2.0
• ORACLE INTERMEDIA 8.1.5.
• PLATFORM: WINDOWS 2000 SERVER

Browser

Java
Servlets

Documents

Web Server

Java
Streams

Text Indexing

Oracle8i
Repository

Structured Columns... LOB Column

Word
HTML
XML
ASCII

FIGURE 1 Java and Oracle8i repository

75JUNE 2000

Java COM

Software AG
www.softwareag.com/bolero

J A V A & O R A C L E

Java COM

76 JUNE 2000

3. Create the Java output stream using the
getBinaryOutputStream() method of
this object to write your document or
any binary information to that column.

For example, to insert information
in the sam_emp table about a new
employee whose employee number is
9001, first insert all the structured infor-
mation along with an empty BLOB using
JDBC. Next, select the LOB column,
résumé, from the same row to get the
oracle.sql.BLOB object (the locator).
Finally, create the Java output stream
from this object:

st.execute("INSERT INTO

sam_emp(empno, resume)

VALUES(9001,empty_blob())");

ResultSet rs = st.executeQuery(

"Select résumé from sam_emp

where empno=9001 for update");

rs.next();

oracle.sql.BLOB blob = ((OracleRe-

sultSet)rs).getBLOB(1);

OutputStream os = blob.getBinaryOut-

putStream();

Optionally, you may use the
java.awt.FileDialog class and java.io
package to dynamically select and read
a file from your PC. Then load it to a LOB
column using the preceding code.

The way you search and retrieve docu-
ments is independent of how you load the
documents. For example, you can store the
documents using PL/SQL or SQL*Loader,
then search and retrieve using Java servlets.
Using PL/SQL, Listing 1 loads an employ-
ee’s résumé, saved as a Microsoft Word file,
to the résumé column of the sam_emp table.

Searching the Repository
The documents stored in the LOB

columns can be indexed using Oracle
Intermedia, which provides advance
search capabilities such as fuzzy, stem-
ming, proxy, phrases and more. It can
also generate thematic searches and
gist. The documents can be indexed via
the “Create Index” database command.

Refer to Listing 2 to see how the
index is built on the résumé column of
the sam_emp table. Once the index is
created, the Java applications can search
the repository by simply submitting
SELECT statements.

The MyServletCtx servlet in Listing 3
searches the term passed to it as a para-
meter in the résumé column of the
sam_emp table. The servlet returns the
rows matching the search criteria in
HTML table format. The employee
names in the HTML table are hyper-
linked to another servlet, MyServlet,

which reads the entire résumé from the
database in its original format.

Retrieving from the Repository
Document retrieval using Java is sim-

ilar to writing documents to the reposi-
tory. The “Working with Large Objects”
section earlier in this article describes
how to read LOBs from the database. The
MyServlet in Listing 4 reads a Microsoft
Word résumé from the sam_emp table,
sets the content type, then streams it out
to the browser using an output stream.

Summary
In this article I’ve shown how you

store, search and retrieve Word docu-
ments using LOB data types and Java.

You can also use the Oracle8i database
to store, index, parse and transform XML
documents. Storing XML documents in
the database removes the need to admin-
ister and manage multiple repositories for
relational and XML data. The Oracle8i’s
JVM makes it possible to run a Java XML
parser in the database. Using the parser,
you can parse and transform the XML
files inside the database before out-
putting it to an application server.

AUTHOR BIO
Samir Shah, a former

Oracle employee and a
certified Oracle

professional, is a manager
of database and Web

technologies at Wall
Street Systems. He has
over 10 years’ industry

experience. sssshah@yahoo.com

The following code (Steps 2–5) inserts MyResume.doc in the
résumé column of sam_emp table.

Step 1: Create a directory object in Oracle.
Here’s how to create a directory object called MY_FILES
that represents C:\MY_DATA directory.
You must have the create directory privilege in Oracle.

create or replace directory
MY_FILES as 'C:\MY_DATA';

Step 2: Insert a row with an empty BLOB in your table and return the
locater.

Step 3: Point to the Word file to be loaded from the directory created
in Step 1 using bfile data type.

Step 4: Open the file and use the locater from Step 2 to insert the file.
Step 5: Close the file and commit the transaction.

declare
f_lob bfile;
b_lob blob;

begin

insert into sam_emp(empno,ename,resume)
values (9001, 'Samir',empty_blob())
return résumé into b_lob;

f_lob := bfilename('MY_FILES', 'MyResume.doc');
dbms_lob.fileopen(f_lob, dbms_lob.file_readonly);
dbms_lob.loadfromfile

(b_lob, f_lob, dbms_lob.getlength(f_lob));
dbms_lob.fileclose(f_lob);

commit;

end;
/

The steps listed below index all the Microsoft Word-formatted
résumés stored in the résumé column to the sam_emp table. The
résumés can then be searched using SQL.
Step 1: Add a primary key to your table if it does not exist. To make

empno primary key of the sam_emp table execute the follow
ing command.

alter table sam_emp add constraint
pk_sam_emp primary key(empno);

Step 2: Get the privileges (ctxapp role) to create text indexes from
administrators.

Step 3: Create the index with the appropriate filter object. Filters
determine how to extract text for document indexing from the
word processor, formatted documents as well as plain text.
See Oracle8i intermedia Text for complete list of filters.

create index ctx_doc_idx on sam_emp(résumé)
indextype is ctxsys.context parameters
('filter CTXSYS.INSO_FILTER');

package package1;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;

/**

This servlet searches documents stored in an Oracle8i database
repository using SQL and JDBC. The hit list is displayed in an HTML
table with hyperlinks. JDK 1.1.7 and an Oracle Thin JDBC 1.22 com-
pliant driver used.

*
* @author Samir Shah

Listing 3: Searching documents using SQL and JDBC

Listing 2: Building index to search documentsListing 1: Inserting Word document in BLOB column using PL/SQL

77JUNE 2000

Java COM

Unify Corporation
www.servletexec.com

Java COM

78 JUNE 2000

* @version 1.0
**/
public class MyServletCtx extends HttpServlet{

Connection cn;

public void init(ServletConfig parm1)
throws ServletException {

super.init(parm1);
try{
DriverManager.registerDriver(

(new oracle.jdbc.driver.OracleDriver()));
cn =DriverManager.getConnection

("jdbc:oracle:thin:@sshah:1521:o8i",
"scott", "tiger");

}
catch (SQLException se){se.printStackTrace();}

}

public void doGet(HttpServletRequest req,
HttpServletResponse res) throws IOException{

doPost(req,res);
}

public void doPost(HttpServletRequest req,
HttpServletResponse res) throws IOException{

PrintWriter out = res.getWriter();
res.setContentType("text/html");

//The term to search in resume column
String term = req.getParameter("term");
if (term == null)

term="security";

out.print("<html>");
out.print("<body>");
out.print("<H1>Search Result</H1>");
out.print("<table border=1 bgcolor=lightblue>");
out.print("<tr><th>ID#</th><th>Name</th></tr>");
out.print("<tr>");
try{
Statement st = cn.createStatement();

//search the term in resume column using SQL
String query =

"Select empno,ename from sam_emp" +
" where contains(resume,'"+term+"')>0";

ResultSet rs = st.executeQuery(query);

while (rs.next()){
out.print("<td>"+ rs.getInt(1)+"</td>");
out.print("<td>" +

"<A HREF=http://sshah:8080/" +
"servlet/MyServlet?term=" +
rs.getString(1) +
" target=Document>" +
rs.getString(2) +
"</td>");

out.print("</tr>");
}

out.print("</table>");
out.print("</body>");
out.print("</html>");

}//try
catch (SQLException se){se.printStackTrace();}

}
}

package package1;

import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;
import java.io.*;
import oracle.jdbc.driver.*;
import oracle.sql.*; //for oracle.sql.BLOB

/**

This class reads the entire document from the résumé LOB column.
It takes one parameter, term, to search a specific employee from the

sam_emp table and returns the document stored in that row.

* JDK 1.1.7, Oracle Thin JDBC 1.22 compliant driver
* with Oracle type extension classes (oracle.sql)
*
* @author Samir Shah
* @version 1.0
**/
public class MyServlet extends HttpServlet{

Connection cn;

public void doGet(HttpServletRequest req,
HttpServletResponse res)
{
try{
doPost(req,res);

}catch (IOException ie){ie.printStackTrace();}
}

public void init(ServletConfig parm1)
throws ServletException
{

super.init(parm1);
try{
DriverManager.registerDriver(

(new oracle.jdbc.driver.OracleDriver()));
cn =DriverManager.getConnection(

"jdbc:oracle:thin:@sshah:1521:o8i",
"scott", "tiger");

}
catch (SQLException se){se.printStackTrace();}

}

public void doPost(HttpServletRequest req,
HttpServletResponse res) throws IOException

{
InputStream is=null;
oracle.sql.BLOB blob=null;

res.setContentType("application/msword");
OutputStream os = res.getOutputStream();
String term = req.getParameter("term");

if (term==null)
term="9001";

try{
Statement st = cn.createStatement();
ResultSet rs = st.executeQuery

("Select resume from sam_emp"+
" where empno="+term);

while (rs.next()){
blob=((OracleResultSet)rs).getBLOB(1);
is=blob.getBinaryStream();

}

int pos=0;
int length=0;
byte[] b = new byte[blob.getChunkSize()];

while((length=is.read(b))!= -1){
pos+=length;
os.write(b);

}
}//try
catch (SQLException se)

{
se.printStackTrace();

}
finally {

is.close();
}

}

}

Listing 4

79JUNE 2000

Java COM

VSI
www.breezexml.com

Java COM

80 JUNE 2000

Developers at

some point in their careers

will find themselves stand-

ing at the whiteboard, trying

their best to regurgitate some

complex development design

they’ve spent all night work-

ing on. This is usually done

with a series of strange sym-

bols, arrows and scribblings in an attempt to convey the clarity that may

lie in the head of said developer (unless of course he or she doesn’t know

what exactly the design is supposed to look like). Either way, you have

the same problem.

In an object-oriented fash-
ion, how do you make tangi-
ble a design that’s intangible
yet very repeatable? How do
you communicate – or in the
latter case, how do you come
up with – something you
know in your heart you’ve
done before but maybe in a
slightly different way. And I’m
not talking about UML. UML
helps, but it provides only the
hieroglyphics you may need
to communicate your design.
What you need is a repeatable
way to show your design
efforts without reinventing
the proverbial design wheel
by going through every step
you originally used to solve
the problem. If you’re a devel-
oper or architect, for example,
and you haven’t gone through
this, you probably will. Wel-
come to the world of patterns!

Rarely does a developer
come up with the right design
on the first attempt. Typically,
each design must go through a

bit of morphing before you can call it a sound one. And what about reusabili-
ty? Isn’t that one of the primary goals of object-oriented design? For both new
and experienced designers the challenge of object-oriented design is difficult
enough. In addition to being an outstanding communications tool, patterns
help make the process of coming up with an elegant object-oriented design
easier. More important, they help make a design reusable. Reusability applies
not only to the objects themselves but also to the process used to come up
with them. That’s where patterns fit in – they help make object-oriented
designs adaptable, sophisticated and, most important, repeatable.

J D J F E A T U R E

A REAL-WORLD DATABASE SCENARIO – APPLYING
BOTH DESIGN AND IMPLEMENTATION PATTERNS

WRITTEN BY CHRISTIAN THILMANY

81JUNE 2000

Java COM

Cruel World
www.cruelworld.com

Java COM

82 JUNE 2000

When referring to patterns in this article I leave out the word design
as I’m covering implementation patterns as well. Unlike what you find in
some pattern books (although most I’ve read are excellent), I wanted to
create a practical piece of code that uses both patterned design and pat-
terned implementation – not another “gutted” bank application but an
actual piece of code that could be used in a real-world business applica-
tion. Something I might use myself with some adjustments. Now that’s
not to say the code I included for download is production ready (see the
JDJ Web site, www.JavaDevelopersJournal.com); in fact, it isn’t! However,
I hope the included code will provide you with a base upon which to
build something useful.

Initially I’ll cover some of the most widely used patterns to imple-
ment a JDBC database connection “pooler,” something usually found
in a distributed EJB development tool such as WebLogic or in other n-
tier environments, such as Microsoft’s Transaction Server. Even the
newest flavor of ODBC has a connection-pooling mechanism built in.
Nonetheless, using such a sophisticated environment for something
like object pooling may be overkill; for pure Java environments, relying
on ODBC connection pooling by using JDBC–ODBC as a solution isn’t
much better. Either way, I hope my connection pooler will provide
some good examples of a few of the primary patterns used for database
development and help you get your feet wet in the world of using pat-
terns.

If you’re new to patterns, one of the better places to start with is the
“Gang of Four” (GoF). No, I’m not talking Spanky, Alfalfa and the gang,
but Gamma, Helm, Johnson and Vlissides. Besides Christopher Alexan-
der, who first spoke of design patterns when referring to buildings
architecture, the Gang of Four, authors of Design Patterns: Elements of
Reusable Object-Oriented Software (Addison Wesley), present some of
the original thoughts on object-oriented design patterns from a lan-
guage-agnostic viewpoint. Although they often mention C++ and
Smalltalk, the book is geared to the patterns themselves, not the lan-
guage used to write them. This is what makes patterns useful – their
general applicability to all languages. For the Java developer this is all
fine and good, but if you’re like me, a little sample code always helps me
to swallow dry subjects. That’s why I highly recommend reading Pat-
terns in Java, Volumes I and II by Mark Grand. These books cover pat-
terns specifically articulated by the author and some of the more popu-
lar patterns covered in the Gang of Four books. They also cover other
pattern originators such as Craig Larman whose “General Responsibili-
ty Assignment Software Patterns” (GRASP) present the more fundamen-
tal object-oriented ideas in the form of design patterns. Most impor-
tant, Grand uses Java to exemplify each pattern. The source code is
actually useful too.

What makes up a pattern? Or a design pattern in particular? Well,
the Gang of Four breaks a pattern’s description into textual sections
that help explain the pattern in detail and show its context. They go on
to explain that each pattern should highlight intent, motivation,
applicability, structure (e.g., UML notation) and consequences, all of
which help to describe the pattern as a whole. In addition, areas such
as the pattern’s design participants, its collaborations with other ele-
ments and its implementation help provide elemental detail so the
pattern can be applied to a specific design. A pattern’s sample code,
known uses, alternative names and related patterns also contribute to
its understanding.

Most of these areas are self-explanatory; for some, patterns may even
overlap in meaning. Thus the gang also recommends that patterns be
placed into certain pattern “classifications” based on principles such as
the pattern’s purpose and scope. These categories include creational,
structural and behavioral. Each classification helps the developer look at
a pattern in a particular perspective, which allows each pattern to fulfill
different forms. The end result is that implementations are based not
only on the pattern but also its classification. For example, some of the
patterns I describe and apply in this article qualify as traditional GoF
“creational” patterns and, when coupled with other complementary pat-
terns, can be classified as distributed database patterns as well. I use the
Singleton (GoF), Delegation (Grand), Observer (GoF) and Object Pooling

(Grand) in this way in the connection pooler code outlined below. I also
refer to other related patterns such as Bounded Buffer (implementa-
tion), Exception Chaining (implementation) and Guarded Suspension
(design) throughout.

I’ve limited the description of the patterns I use in the code example
to a few “consolidated descriptives” that should provide enough infor-
mation for you to grasp their meaning without my going into pages of
detail. I’ll show you how to apply these patterns to a database connec-
tion pooler component that can run either locally in a more traditional
fat-client model or, in an attempt to create a more thin-client model,
remotely, by using RMI to run the connection pooler on the server. The
choice is yours. Although this example is written and tested in both
environments, keep in mind that it has been designed primarily to run
in a threaded RMI server. If run locally, you should make minor modifi-
cations to improve performance (e.g., remove synchronization quali-
fiers).

Okay, let’s talk about a few common patterns that can be applied to
a typical database implementation and, in my case, the connection
pooler.

Singleton Pattern (GoF Creational Pattern)
• Intent: To ensure that the class has only one instance and to provide a

global point of access to it.
• Motivation: Sometimes only one instance of an object can exist. For

example, although there are many database connections, there’s only
one database connection pooler to control them.

• Context: An instance operation must be defined that allows clients
access to the singleton object through this operation only. Using this
single-access point of control improves namespace issues by elimi-
nating the need for global references. Limited resources are typically
controlled using this pattern so items such as connections can be con-
trolled, pooled and dispensed with.

• Solution and structure: The structure is simple as it’s implemented
using a single class with one static instance operation that’s used to
return a unique instance variable. Typically, such classes have private
constructors that don’t allow external clients to dynamically instanti-
ate this class, thus forcing them to use the instance operation only (see
Figure 1).

• Implementation: Singleton implementations can vary as long as only
one instance of the class is allowed and the creation sequence is
accessible by all clients. In the database connection pooler, the pool-
er can run locally or remotely. Whether you run this code remotely
using RMI or CORBA or just locally, the code should be equally effec-
tive at pooling connections. If run locally (without RMI), the connec-
tion pooler object follows the singleton pattern in a purist fashion
since each database client can have only one instance of the pooler.
This is controlled by using a static instance operation that returns the
instance variable for the pooler that’s allocated during first activation.

Singleton

static Instance()
singletonOperation()
getSingletonData()

static uniqueInstance

return uniqueInstance

FIGURE 1 Singleton pattern UML diagram

83JUNE 2000

Java COM

IAM Consulting
www.iamx.com

Java COM

84 JUNE 2000

public static class ConnectionPooler implements . . .

{

private static ConnectionPooler thePooler = new Connec-

tionPooler();

private ConnectionPooler() { . . .}

public synchronized static ConnectionPooler getDbConnec-

tionPooler()

{

return thePooler;

}

...

When run remotely, which we’ll cover later, the RMI server controls
the instantiation of the connection pooler in a singleton fashion without
requiring you to control single instantiation at the connection pooler
level. In other words, although the connection pooler is treated as a sin-
gleton, it’s done so through the RMI server, not the connection pooler
itself; otherwise, each client would receive its own connection pooler
when run remotely, which I’m trying to avoid.

The following shows how the singleton pattern can be implemented
in various ways as long as the foregoing principles hold true.

public class AppServer extends UnicastRemoteObject implements

. . .

{

public static RemoteConnectionPoolerIF rcp = null;

public synchronized SessionIF createSession(String

dbURL) . . .

{

if (rcp == null) // only allocate one pooler per

appserver

{

. . .

rcp = (RemoteConnectionPoolerIF)

DbConnection.ConnectionPooler.getDbCon-

nectionPooler();

}

else

. . .

Object Pool Pattern (Grand Creational Pattern)
• Intent: To control the use of a limited resource, typically expensive to

create, and/or a resource limited by the number of objects allowed to
be created.

• Motivation: To increase application performance and prevent valu-
able and expensive resources from being exhausted, you must control
them through pooling.

• Context: Aside from network connection initialization, creating con-
nections to a database can be the single most expensive operation in
an application. Pooling these connections provides dramatic applica-
tion performance increases through repetitive database access. Con-
trolling them also provides a means for keeping allocated resources
under control (e.g., memory) in distributed architectures for the client
as well as the server.

• Solution and structure: The structure of the pooling pattern con-
tains the reusable objects, the client that uses them and a reusable
object pool (see Figure 2). New instances are to be controlled and
are usually limited so clients can reuse objects instead of creating
new ones. For database connections it’s usually necessary to
assume that each reusable object is identical so that when run in a
remote environment, with many different clients, each connection
can be treated the same (this will lead to lengthy and usually heat-
ed security discussions with the database folks). They’re all identi-
cal in nature. When run locally, it’s possible to uniquely identify

each resource object that’s managed, but the client is then required
to pass in specific qualifiers (user ID and password), cluttering up
the code.

• Implementation: In the connection pooler example, an RMI client
(AppClientTest.java) represents a client. During session creation a
client is given access to a session that allows it to acquire and release
connections at will. The connection object is represented by the
DbConnection class, which acts as a wrapper between the client and
the actual JDBC code (see “Delegation Pattern” section below). The
pooler, represented by a nested class within DbConnection, manages
the connections by first initializing and caching them (caching is
optional). Operations within the connection pooler allow each ses-
sion to acquire and later release each connection. Whether new con-
nections are continuously created on request or become “guarded”
and wait for connections to be returned by other clients is an option
controlled by the developer.

Reusable

Uses

Client Manager

Manage Reusable Objects

1

0...*

0...*

1

1

ReusablePool

<<constructor>>
ReusablePool
<<misc>>
getInstance()
acquireReusable(:)Reusable
releaseReusable(:Reusable)
setMaxPoolSize(maxSize:int)

Client

FIGURE 2 Object pool pattern UML diagram

A NOTE ON GUARDED SUSPENSION

In the example a Bounded Buffer that first initializes the connection is created
at startup, then controls the actual connections through “guarded suspension.” The
server will wait until connections exist in the pool before giving them out and, con-
versely, won’t place connections into an already full connection pool. This allows
the developer to better manage valuable resources on the server if desired. Guard-
ed suspension can be considered either a design or implementation pattern,
depending on the code. For this example, simply using the thread wait() operation
along with method synchronization allows the connection pooler to control connec-
tions as mentioned.

if (usePreCachedConnections)

{

if (usedSlots_ == 0)

{

long waitTime = MAX_WAIT_TIME;

. . .

for (;;)

{

try

{

wait(waitTime);

. . .

(Guarded suspension, a pattern in its own right, isn’t considered part of the
object pool pattern but is included here for demonstration purposes.)

85JUNE 2000

Java COM

Unify Corporation
www.ewavecommerce.com

Java COM

86 JUNE 2000

Once received at the client, the client uses the connection like any
other JDBC connection by issuing queries, updates or any other sup-
ported database operation. Each database operation is handled in a del-
egated fashion by JDBC, limited only by the JDBC driver used by the con-
nection object. When a data operation is complete, the client releases
the connection back to the connection pooler (releaseDbConnection()),
which returns it to the pool at that time. This immediate acquire-and-
release allows the client code to concentrate on the operation at hand,
not the specifics of holding onto connections for performance reasons.

Precaching connections is optional and in our source code occurs
during initialization, which is kicked off when the first client creates a
session at startup. At that point a predetermined number of connections
is acquired and placed into the pool for immediate availability. This
allows access times to increase dramatically for additional online clients
that require connections, thus boosting performance of the application
as a whole. Guarded suspension is used when using precached connec-
tions only (see sidebar).

Delegation Pattern (Grand Fundamental Pattern)
• Intent: Delegation allows the developer to extend and reuse function-

ality of the existing class without using inheritance.
• Motivation: Avoiding inheritance may be optional or required,

depending on the implementation. If a class can’t be inherited or
doesn’t fit the “is a kind of” relationship to its parent, delegation
should be used.

• Context: To pass a JDBC result set across the wire using RMI, it must
either be “remoteable” (in the sample code RemoteResultSet extends
RMI’s UnicastRemoteObject and implements RemoteResultSetIF)
and/or “serializable.” This is required for RMI to allow a result set to be
marshaled across the network. A JDBC result set, by default, doesn’t
fulfill either of these requirements, so delegation is used to assign
remoteable calls across the network to its JDBC equivalent on the
server. (See DbConnection.java – executeQuery() on the JDJ Web site.)
For iterative next() queries (see AppClientTest.java on the JDJ Web
site), this is not the most efficient way to query data since each record
has to perform a network round-trip to complete. For a production
environment it’s recommended that a form of prefetching, similar to
JDBC’s own prefetching, is used to prequery results before passing
them across the network. In fact, in most distributed database appli-
cations business services acting as connection clients typically fill that
role from the server side, not the client side.

• Solution and structure: Using delegation, an object can assign opera-
tions to different objects at different times. Its structure (see Figure 3)
is simply shown with the objects it delegates to as arrows leading to
the delegator instead of to the traditional inheritance class diagram.

• Implementation: For the connection pooler component to run on the
server, a number of objects must be made remoteable (primitive
remote without modification). These include the reusable connection
object, connection pooler and result set that a query returns. Run
locally, the connection pooler can use the default JDBC result set, but
when run remotely I had to create my own version. To avoid having to
reimplement a full result set from scratch, delegation can be used to
assign remote requests from the delegator (RemoteResultSet) to the
JDBC result set. When executeQuery() is called on the connection
object, a new RemoteResultSet is created, passing into its constructor
the result set that returned from JDBC’s executeQuery(). Once the
RemoteResultSet has the original JDBC result set, it simply delegates
all calls to it (see previous paragraph on iterative next() calls).

public synchronized RemoteResultSetIF

executeQuery(String query) . . .

{

stmt = connection.createStatement();

rs = stmt.executeQuery(query);

rsRemote = new RemoteResultSet(rs);

return (RemoteResultSetIF) rsRemote;

}

Observer Pattern in Detail (GoF Pattern)
• Intent: To provide a mechanism that allows objects to dynamically

subscribe to state change notifications from another object.
• Motivation: When client objects communicate with a server object of

some kind, it would be beneficial for them to be made aware of serv-
er-side state changes in that object. This allows subscriber clients to
react to the state changes in a more dynamic fashion, thus adding
robustness to the application.

• Context: Suppose a client communicates regularly with a server object
but that communication is time-critical. As with the connection pool-
er component, each initial connection to the connection pooler caus-
es it to start up and fill the pool with connections. This could take sev-
eral seconds, depending on how many connections the capacity is set
for. Before this occurs it may be beneficial for said client to be notified
when a server is online or going offline, thus giving it the opportunity
to determine the time it will take to make such a connection. Not all
clients may want this service, so the subscriber – or “observer” in this
case – should have the option of observing only. The server, or observ-
able object in this case, just notifies all observers of the state change,
not caring which objects they’re actually observing. Take heed, how-
ever: it could be a significant performance hit if hundreds of clients
need to be notified. In this case the notification mechanism would be
better served by running from a separate multicasting thread.

• Solution and structure: The Observer pattern is made up of an
observer class that implements an interface containing a method the
observable will call during notification. On the other side is the
observable class, which implements an interface that the observer
calls to register with the observable. The observer calls registerOb-
server() or addObserver() whenever that client wishes to receive noti-
fications. The observable then keeps a list of observers and, during
state changes, calls the notification method on the interface passed to
it by the observer during registration. To stop receiving notifications,

Delegator Delegate1 1Uses

User Usee

FIGURE 3 Delegation pattern UML diagram

Observer

0...* 1

0...*

<<interface>>
ObservableIF

addObserver(:ObserverIF)
removeObserver(:ObserverIF)

<<interface>>
ObserverIF

Notify()

Observable

addObserver(:ObserverIF)
removeObserver(:ObserveriF)
ObserverNotify()

Registers to
receive notifications

Notifies

FIGURE 4 Observer pattern UML diagram

87JUNE 2000

Java COM

4th Pass
www.4thpass.com

Java COM

88 JUNE 2000

the observer simply unregisters with the observable object in similar
fashion (unregisterObserver() or removeObserver().

• Implementation: The connection pooler implementation of this pat-
tern is simple (see Figure 4). The AppClientTest implements Remote-
ObserverIF, which contains the method that the observable will call
during a state change. In the RMI test client (AppClientTest), after the
RMI server is started the client registers with the server by calling
addObserver().

appServer = (RemoteAppServerIF) Naming.lookup(base_url + "/AppServer");

if (appServer == null)

{

return;

}

appServer.addObserver(this);

At this point the RMI server keeps track of this client. When a client
calls closeSession() to close its own session, the server checks to see if
there are any remaining connected clients. If there are still active clients,
a message notification is sent to all observers that at least one session is
active and the server won’t shut down (until the last session closes). For
this example I display a message only, but with a bit more work this
could actually do something useful.

if (sessionCount == 0) // no more clients so close down the pool

closeConnectionPooler(dbURL);

else

remoteNotify("Active sessions still remain pooler still run-

ning...");

Other Database-Friendly Patterns Worth Mentioning
• Guarded suspension (Lea): This is implemented in the connection

pooler code (see sidebar).
• Balking (Lea): Instead of using guarded suspension, the balking pat-

tern could throw an exception instead of waiting for the correct state
to occur.

• Producer–consumer (Grand): Use for asynchronous transactions in
which a producer can push data objects onto a queue and a consumer
can pop those objects for later processing (e.g., database error logger).

• State (GoF): Enhances the Session class in the connection pooler com-
ponent to use a separate concrete state object, subclassed from an
abstract state object. State-based behavior can be better decoupled
using just one class to enhance reusability.

Developing a Database Connection Pooler
Now that I’ve covered the patterns from a structural perspective, I’ll

apply them to a fully implemented database connection pooler set of
components (see Figure 5). This example is written as an RMI-based
client/server Java application with the AppClientTest (RMI client) and
the AppServer (RMI server) as the two major drivers of both client and
server. This was written with Symantec’s VisualCafé Enterprise Version
3.1 using JDK 1.2.2. I tested two Type 4 JDBC drivers: Oracle’s Type 4 Thin
Driver Version 8.16 against an Oracle 7 Database and the MS SQL Server
4 JDBC/Kona Type 4 Driver that works with the latest version of BEA’s
WebLogic going against MS SQL Server 7.0. For the example I connected
to the “pubs” database and queried the authors’ table with a reusable
DbConnection object for testing.

Note: As mentioned earlier, executing queries remotely should be
optimized to precache data that hasn’t been implemented for this exam-
ple. Precaching would avoid unnecessary network round-trips during
iterative record traversals (e.g., using ResultSet.next()).

First unzip objectpool.zip (keeping directory paths is recommended)
and edit both RunAppServer.bat and RunClient.bat to use your current
class path (this must include the class path of the JDBC drivers you

decide to use). Once your JDBC driver is installed and tested, open the
objectpool.vep project (if you’re using Café) and perform a full build;
otherwise, compile individually.

If you’re running from Café, turn off the automatic RMI compilation
step. By default, VisualCafé will try and run “rmic” to build the RMI mar-
shaling code during a full build – this may crash your system (this has
been reported to Symantec/BEA support). To turn this off, from “proj-
ect/options/compiler/compiler category/advanced,” type “–normi” in
the Custom Compiler Flags edit box and rebuild.

Session
Object

Connection
Object

RMI
ServerClient Connection

Pooler

JDBC
Data

Soruce

N
et

w
or

k
B

ou
nd

ar
y

FIGURE 5 Connection pooler and related components – general
architecture

TABLE 1 Components of the connection pooler

CLASS FILE DESCRIPTION

DbConnection DbConnection.java Main reusable connection object that
wraps JDBC behavior. Used by client to
perform all database operations, e.g.,
query, update, insert, et al.

ConnectionPooler DbConnection.java Nested inner class of DbConnection that
implements the object pool, singleton,
bounded buffer and guarded suspension
patterns. Used to manage pool of DbCon-
nection objects.

DbException DbException.java Exceptions class that supports exception
chaining (implementation pattern).

AppClientTest AppClientTest.java Main RMI driver client used to mimic
connection acquisition and release. Per-
forms basic queries from command line.

AppServer AppServer.java RMI server used to drive ConnectionPool-
er and Session object creation. Initializes
the ConnectionPooler to cache connec-
tions at start-up. Drives initialization and
connection pooler cleanup. Implements
the observer and singleton patterns.

RemoteResultSet RemoteResultSet.java Remote-friendly version of JDBC Result-
Set that implements the delegation pat-
tern.

Session Session.java Client-created class that holds client
state. Used for acquiring and releasing
connections remotely.

89JUNE 2000

Java COM

MetaMata Inc
www.metamat.com

Java COM

Once the project is built or all classes have been compiled, you can
run RunRmic.bat from the command line to build the RMI marshaling
code all at once. Now you’re ready to run.

To run the app server from a command-line window, simply run
RunAppServer.bat (edited with your current classpath). This should
automatically start the RMI registry and the RMI server, which will
begin “listening” for client connections. Once the server is running,
from a separate command-line window, run RunClient.bat. This should
begin the AppClientTest RMI client. When started, the AppClientTest
will connect with the AppServer using RMI, create a session and begin
acquiring connections using the session object. After the connections
have been acquired, a simple query is made on the database, after
which the user can select which action to perform next. When the first
session is created, the AppServer will initialize the connection pooler
and pass into it the number of connections to cache. This is where the
database connections are first established and placed into the pool.
This process may take a few seconds (for the first client), depending on
how many connections you want to cache (see ConnectionPooler.Ini-
tialize() for details). Subsequent client connections (since they’re now
pooled) will be much faster.

You can fire up additional clients at any time using a separate com-
mand-line window. During the demo keep in mind that the connection
pooler will block until some connections have been placed or returned
into the connection pool, timing out if too many connections are
requested at once (this can be adjusted). To the server each command-
line window running AppClientTest represents a different client. This
will demonstrate a simple concurrent environment. Note also that the
connection pooler can be adjusted to run locally without RMI as well as
with noncached connections. The choice is yours.

The connection pooler is actually made up of several components
broken up into classes and files (see Table 1).

As mentioned earlier, the connection pooler is implemented as an
inner class of the main DbConnection class using the singleton pattern.
The AppServer, when running remotely, actually controls the singleton
nature of the connection pooler by creating a new connection pooler
only during the first connection. After that, each subsequent client
request uses the existing connection held by an instance variable in the
AppServer. When run locally, the connection pooler will run as a single-
ton as expected.

After initialization, the connection pooler class will use guarded
suspension when connections have been cached (optional) to control
the number of connections allocated. During operation, each client
first requests a session object by calling createSesssion(), then a con-
nection object (DbConnection) by calling acquireRemoteDbConnec-
tion() using the session object. Once a connection object is retrieved
from the pool, the client can then use any of the remoteable opera-
tions on that connection (e.g., executeUpdate, executeQuery). When
the client completes its operations, it will first release the connection
by calling releaseRemoteDbConnection() using the session object,
and finally close the session by calling closeSession(). The rest is up to
you.

Summary
This article has focused on the real-world database use of design and

implementation patterns. Although not quite ready for production, you
can use the base code and apply it to most database applications, giving
you yet another tool to avoid reinventing the design wheel and freezing
at the whiteboard.

AUTHOR BIO
Christian Thilmany is president of The eTier Group, Inc., in Houston,Texas. He has over 11 years’ experience
in distributed application architectures for Internet, intranet and client/server development using Java, C++,
Visual Basic and more. Christian is a Microsoft Certified Solutions Developer.

christian@etier.com

or

Call 1-800-513-7111
Subscribe to the Finest Technical

Journals in the Industry!

Go Online and
Subscribe

Today!
www.SYS-CON.com

GGEETT
YYOOUURR
OOWWNN!!

SYS-CON
MEDIA

91JUNE 2000

Java COM

Evergreen
www.evergreen.com/jdj.html

P R O G R A M M I N G T E C H N I Q U E S

This class is built for speed in application development, among other things

A
common set of programming problems drove us to develop a Java class we call
PropArgs. Consider the following questions a programmer may want answered
about a program: Which RDBMS instance should data come from? Does this

particular user have any personal preferences I should be setting? Should debug-
ging code be executed during a particular run of a program? Are there different
execution paths based on the current operating system? Should the programmer
be operating in batch or interactive mode? What directory should disk output be
written to?

WRITTEN BY
GENE CALLAHAN
& ROB DODSON

PropArgs – Every Programmer’s Dream

Java COM

92 JUNE 2000

The common factor in these ques-
tions is that they deal with the state of
the program when it starts up. Answer-
ing the questions involves several prob-
lems that usually trouble programmers:
saving and then restoring application
state and user preferences; the normally
painful process of command-line han-
dling (Java doesn’t have a standard class
to do this); getting access to system
properties, application properties and
command-line arguments in a uniform
manner; setting internal state of objects
externally at runtime, that is, without
recompilation; and accessing properties
as various types (String, int, boolean,
Vector, etc.).

Besides the benefits a reusable class
for handling these issues brings to an
individual program, our system staff
saw a benefit in being able to centrally
locate and manage companywide prop-
erties such as the network location of
common servers, and the differences
between our production and our test
environments. In addition, we wanted
to handle common application setup
tasks such as parsing special command-
line arguments (-?, -debug, -dump, etc.)
and providing a standard formatted
usage line for every program. By creat-
ing a class to handle all these problems,
programmers can focus on solving the
application problems at hand rather
than the same old application start-up
issues.

Solution: PropArgs Class
To solve these problems we developed

a class called PropArgs (the name is short
for “properties and arguments”). A proper-
ty is a key = value pair of strings. String here
means the Java String class at runtime and
a simple text string of characters when
stored on disk. In our implementation the
characters in the key must be alphanumer-
ic characters or periods. The value field

may contain alphanumeric characters,
spaces or punctuation. At runtime a prop-
erty value may be looked up and its value
converted into some other type. The con-
version is done in the PropArgs class based
on which of a set of get() calls the applica-
tion makes. For example, the property size
= 10 can have its value retrieved at runtime
as a String, an int or a double, depending
on whether the application calls get-
(“size”), getInt(“size”) or getDouble(“size”).
Thus the application is shielded from hav-
ing to know how the properties are stored
inside PropArgs.

A group of properties is referred to as
a property set. A set is named by a quin-
tuple. Commas separate the elements of
the quintuple. An element may be unde-
fined, in which case a tilde is used as a
placeholder. Each part of the quintuple
has a domain. In order, the domains are
Environment, Host, User, Application
and Instance. (“Instance” allows multi-
ple property sets per application for
each user.) An example property set is
test,~,~,OptionViewer. This designates
properties for the test environment, on
any host, for any user, for the Option-
Viewer application. Note that we don’t
require the Instance to be mentioned if
it’s undefined, as it is last and its absence
doesn’t present any difficulties in pars-
ing the quintuple. Let’s look at another
example: prod,spica,rob,OptionView-
er,1. This set is for the prod environ-
ment, on host spica, for user rob, for
instance 1 of application OptionViewer.

Property sets are loaded at runtime
in a particular order. This allows some
properties to override others. As we load
sets, starting with the most general and
moving to the most specific, program-
mers are able to inherit common prop-
erties, then fine-tune this set for their
application for specific users, and even
for multiple instances per user, so that
users can store multiple configurations.
The load order is:

Env, host, ~, ~

Env, ~ , user, ~

Env, ~ , ~ , app,

Env, host, ~ , app,

Env, ~ , user , app,

Env, host, user , app,

Env, ~ ,~ , app,

Instance

Env, host, ~ , app,

Instance

Env, ~ , user, app, Instance

Env, host, user, app, Instance

If a particular set isn’t found, it’s just
skipped, and the next in line is loaded.
The special instance of save is used to
store properties saved at runtime.

Property overriding is accomplished
by simply overwriting older properties
with newer values if the keys are the
same. For example, if Speed = 19200 is
defined in prod,~,~,modem and Speed =
56000 is defined in prod,~,rob,modem,
then, if rob is running, the modem
application Speed will be 56000, but for
all others it will be 19200.

Features
In this section we’ll discuss some of

the main features of the PropArgs class.
It has a rich set of methods for the appli-
cation programmer.

COMMAND-LINE OVERRIDE
Properties specified on the command

line override those loaded from the prop-
erty database. This is a powerful idea. You
can write your classes to have attributes
and behaviors controlled from the proper-
ty database. Nevertheless, runtime behav-
ior of these classes can be modified simply
be overriding the property on the com-
mand line. No recompilation is needed.
We find ourselves putting more and more
class configuration into properties for this
reason. Also, because all properties are
stored in one place, it’s easier to adminis-

93JUNE 2000

Java COM

PointBase
www.pointbase.com/jdj

P R O G R A M M I N G T E C H N I Q U E S

Java COM

94 JUNE 2000

ter the company’s applications and to control
their behavior in a standard manner. An exam-
ple of command-line overriding: if the proper-
ty set test,~,~,modem contained the property
device = /dev/ser1, to override it at runtime on
the command line, you might say:

modem –device /dev/ser2

That’s it! Note that the equal sign is not used
on the command line.

STORAGE
Properties are currently stored in text files,

with one property set stored per file. Only one
spot in the PropArgs code knows about this
location. They could just as easily be stored in a
database and retrieved via SQL, or on a remote
server and retrieved via a TCP/IP socket. Text
files were chosen for ease of implementation
and so as not to force all PropArgs clients to
connect to a database. Text files also have the
benefit of allowing processing by other text-
handling tools. (We also provide a GUI for most
common property editing tasks – the GUI is
discussed in greater detail below.)

HANDLE DIFFERENT OPERATING SYSTEMS TRANSPARENTLY
There’s only one operating system-depen-

dent variable in all our numerous apps and
that is in PropArgs. Programmers can specify

properties that are different depending on the
OS the application is run on. This is done with
property keys that begin with an OS name. Ide-
ally you have a key = value pair for each OS you
support, for example:

unix.database = /usr/data

win.database = c:\data

At runtime PropArgs determines which OS
it’s running on and does the following: all key =
value pairs that start with the current OS name
are kept, but with the OS name stripped off. All
key = value pairs that start with other OS names
are discarded. What’s left is simply:

database = /usr/data

on UNIX , or, on Windows:

database = c:\data

VARIABLE VAR SUBSTITUTION
String variable substitution is carried out at

PropArgs constructor time. This is a handy way
to share values and to save some typing. In the
value part of any property you may refer to any
previously defined key. Thus:

Foo = bar

Name = Foo

will set the value of Name to bar. You can see
from this that order of property definition is
important. PropArgs maintains the ordering of
key = value pairs across saves and reloads.

STATIC INTERFACE
PropArgs provides a static interface so that

classes that aren’t directly passed a PropArgs
instance at runtime are still able to get access
to the application’s properties. A static class
variable called PropArgs.StaticPropArgs always
points to the instance set in the method
PropArgs.initStatic(), which is usually called in
an application’s main(). Any class may then
access properties in the following manner:

PropArgs.StaticPropArgs.get("prop_key");

CHECK() METHOD
The PropArgs.check(exit) method makes

sure that all the properties set in addUsage()
calls are present. Currently it checks that a
property is present and, optionally, that it has a
value. Recall that command-line arguments
need not have a value (e.g., -debug). If any
arguments are missing or don’t have values
when they should, a usage line is printed to
stderr, and if the exit flag is set, the application
exits.

Check() also does a few other helpful things
for the programmer. If there is a -debug prop-
erty present, it turns on the printing of debug-
ging information in our logging class. If there is
a -? or -help command-line argument, a usage
line is printed. Also, if there is a log.filename
property present, it is passed to the logging
class.

There is also a method usage() that can be
called directly at any time to print the usage
line. The addUsage() method is invoked as fol-
lows:

Props.addUsage("-file",false,"<filename>");

The second argument denotes whether the
property is required. The last argument can be
null if the property doesn’t have a value but is
just a boolean flag.

PUT()
The put(String key, String value), together with

get(), are the workhorse methods of PropArgs. Put
saves properties in an internal hashtable. Some
internal debugging and housekeeping activities are
done at put() time: saving the source of the proper-
ty (file, application, internally created) for later
debugging, and saving the order of the property
(properties must be saved in the correct order).
Dollar sign substitution as well as OS stripping is
also done during put(), and all include processing.

GET()
The get(String key) is the main method

used to retrieve a property’s value. The most
commonly used version of get returns the
value as a String but there are methods to get
the value as an int, long, double, boolean, Vec-

Generic
Logic, Inc.

www.genlogic.com

95JUNE 2000

Java COM

Prosyst
www.prosyst.com

Java COM

96 JUNE 2000

P R O G R A M M I N G T E C H N I Q U E S
tor or another PropArgs instance. Most
forms of get take a default value, which
is returned if the key isn’t found. For
example,

String boss =

props.get("boss","Rob");

would return “Rob” if no other boss was
defined.

INCLUDE
PropArgs supports the notion of

recursively including other property
definitions, much like C or C++. Any key
that begins with includeprops or
includefile will cause PropArgs to recur-
sively process that property set or file.
Since in any single application all keys
must be unique, to include more than
one file or property set you must append
some unique identifiers. Example:

includeprops1 = deve,~,~,ports

includeprops2 = deve,~,~,servernames

includefile1 = /usr/tmp/externalstuff

includefile2 = /usr/tmp/morestuff

Including allows the sharing of prop-
erties among many applications. It also
makes it easy to change the behavior of
multiple applications in one place. For
instance, if the name of a common serv-
er is changed, you need to edit it only
once to update all of your applications.

SAVE
An important feature of the PropArgs

class is the ability of an application to
save properties that have been changed
at runtime to the properties database.
The most common use of the feature is
for an application to save user prefer-

ences. For example, in some applica-
tions the user may be able to set color
preferences, window positions, JTable
column positions and so on. The user
wants to use the same setting every time
the application runs. The settings can be
saved and then retrieved automatically
by PropArgs the next time the program
is run.

The saved properties are loaded last
(see the load order above), thus overrid-
ing any default properties.

GETVECTOR()
A Java Vector can be instantiated

from a property by PropArgs if it is of the
form:

key = a,b,c,d

Calling:

Vector vec = PropArgs.getVector(key);

will return a Vector containing the ele-
ments “a,” “b,” “c” and “d.”

GETPROPARGS()
A new instance of a PropArgs can be

created from a key = value property pair
if it looks like:

Info = a = b, 1 = 2 , x = z, 3 = 4

Calling:

PropArgs newprops = props.get-

PropArgs("Info");

will do the job, and then:

newprops.get("a");

will return “b.”
Creating a new PropArgs from a sin-

gle property is a good way to use proper-
ties to set and save object states. A class
could take a PropArgs instance as a
parameter to its constructor and initial-
ize itself from the key = value pairs. You
may want to control exactly what prop-
erties a class sees, so rather than send it
the main application instance of
PropArgs, you pass one just for that
class. A class can also save its state in a
PropArgs instance, which can be turned
into a single property in the main appli-
cation’s complete property set. This may
seem convoluted, but we use it fre-
quently and it is quite powerful.

PROPARGSOBJFACTORY
To save and load more complicated

classes to and from properties, we
designed a separate class called
PropArgsObjFactory. To use this class
you simply need to write put() and get()

methods to convert your class to and
from string form. For example, to store
and load the Java Color class as a prop-
erty, the interface might look like:

Color getColor(String key, PropArgs

props)

Void putColor(String key, Color

color, PropArgs props)

So a call like:

PropArgsObjFactory.putCol-

or("Button.color", color1, props);

might produce a key = value pair like:

Button.color = 255,100,100

The get method just needs to parse
the RGB string and instantiate a Color.

PROPARGS GUI
We’ve written a Java-based GUI to

allow developers and system adminis-
trators to edit properties. This has made
controlling application parameters easy.
It’s also become an excellent debugging
tool. For example, with the GUI, if a user
complains of a problem, we can see just
what the setup for the application was
and possibly fix it directly in the GUI.

Listing 1 is an example of the typical
PropArgs setup in main().

Typical application usage might look
like Listing 2.

Summary
The PropArgs class has benefited us

in several ways:
• It’s sped up application development

by making it easy to access all the var-
ious properties in the Java runtime
environment.

• It’s taken away the drudgery of pars-
ing and checking command-line
arguments.

• It’s made it easy to externally control
the internal behavior of applications
and classes.

• By centrally locating all the applica-
tion properties for the entire compa-
ny, it’s easy to make changes that
affect all or many applications at once.

It you’re interested in using the
PropArgs class for your project, the
source code is available at www.robdod-
son.net/java.

• • •

Thanks to the other developers who
contributed to the design of PropArgs,
especially Marlon Guarino.

AUTHOR BIOS
Gene Callahan,

president of St. George
Technologies, designs and

implements Internet
projects. He has written

articles for several
national and international

industry publications.

Rob Dodson is a software
developer who writes

options-trading software
in Java and C++ for OTA

Limited Partnership.
Previous projects include

weather analysis software,
tactical programs for

Navy submarines
and code for electronic

shelf labels.

gcallah@erols.com robdodson@erols.com

public static void main(String[] args)
{

PropArgs props = new PropArgs("App-
Name",args,null);
Props.initStatic(props);

props.addUsage("server", true, "<host>",
"hostname");
props.addUsage("file", false, "<file name>");

props.check(true);

String server = props.get("server");
String file = props.get("file","default_file");
}

Boolean debug = props.getBoolean{"debug");
int size = props.get("size",20);
Vector names = props.getVector("userlist");
Color background =
PropArgsObjFactory.getColor(props.get("backcol-
or"));
props.put("size","100");
props.putDouble("pi",3.14159);
props.save();

Listing 2

Listing 1

97JUNE 2000

Java COM

Sic Corporation
www.sic21.com

V I S U A L A G E R E P O S I T O R Y

Tools that eliminate the frustration of developing EJBs by hand

E
nterprise JavaBeans (aka EJBs) are fast becoming a main-
stay in Web-based business applications.They’re not trivial
to develop, though – at least not if you’re developing them

by hand and ignoring the EJB tools already available to auto-
mate (and thus simplify) your development tasks.

WRITTEN BY
LUCY S. BARNHILL,

ANGUS MCINTYRE &
ROB STEVENSON

Building Enterprise Beans with VisualAge for Java

Java COM

98 JUNE 2000

If you earn your living as a professional
Java programmer, you know that enter-
prise beans are nonvisual, server-side soft-
ware components that conform to Sun
Microsystems’ EJB specification. Enter-
prise beans allow you to develop platform-
neutral, distributed applications that run
on virtually any EJB-compliant server.

EJB technology simplifies server-side
application development by delegating
many of the common system-level pro-
gramming tasks – transactional seman-
tics, data persistence, security and work-
load management – to the EJB server
providers. This allows you to focus pri-
marily on the application business logic
when developing enterprise beans.

Enterprise beans and their many ben-
efits have been well documented in past
issues of Java Developer’s Journal. A com-
plete description of EJB technology and its
advantages is found in Sun Microsystems’
EJB 1.0 and 1.1 specifications at http:/
/java.sun.com/products/ejb/docs10.html
and http://java.sun. com/products/ejb/
docs.html.

While they play an increasingly impor-
tant role in the development of enterprise
Web applications, developing EJBs pre-
sents some significant challenges. After we
examine some of the challenges, we’ll look
at a solution that can help simplify devel-
opment. This solution is found in the Web-
Sphere application development tools
that are part of IBM’s VisualAge for Java
product, which we’ll test-drive with a
short, hands-on tutorial.

The Challenges
Despite the many advantages of

enterprise beans, they are technologi-

cally complex and developing them is
generally not a simple task. To create an
enterprise bean, you must follow a set of
interfaces defined by the EJB specifica-
tion. For example, in addition to defin-
ing an enterprise bean class, you must
define both home and remote interfaces
for each enterprise bean. The latter
defines the client’s view of the enterprise
bean’s business methods; the former
defines the client’s view of the bean’s
object life-cycle. This involves such
events as the creation and removal of
the enterprise bean.

You also need to ensure that the
methods defined in the enterprise
bean’s interfaces and classes are kept
consistent. And if you’re creating an
entity bean, you must define its persis-
tence fields and map them to a persis-
tent datastore, such as a relational data-
base. Once you’ve created the enterprise
bean, you need to target it to a specific
bean container by generating the imple-
mentation classes for the home and
remote interfaces. Then you need to test
the home and remote methods. Finally,
once testing is complete, you need to
package the bean for installation on a
production server.

This isn’t an exhaustive look at the
challenges associated with developing
enterprise beans, but it should give you
a feel for their underlying complexity.
Fortunately, there are ready-made solu-
tions that can help you develop enter-
prise beans quickly and effectively.

One Solution
Although you can develop enterprise

beans by hand, it’s generally faster and
easier to use a set of application devel-
opment tools specifically designed for
the task that mask much of the complex-
ity. The IBM WebSphere tools built into
VisualAge for Java enable you to use
VisualAge interactively with other Web

development products, such as Web-
Sphere Studio and the WebSphere Appli-
cation Server. The tools include:
• WebSphere Test Environment
• JSP/Servlet Development Environment
• EJB Development Environment

The WebSphere Test Environment
allows you to test servlets, JSP files and
enterprise beans in a runtime environ-
ment that’s essentially the same as that
provided in the WebSphere Application
Server. This enables you to develop code
for deployment to the WebSphere Appli-
cation Server or to other application
servers from non-IBM vendors. The
JSP/Servlet Development Environment
lets you run, monitor and debug servlets
and JSP files that you’ve created in Web-
Sphere Studio or other Web develop-
ment products. And the EJB Develop-
ment Environment enables you to
develop enterprise beans and associat-
ed EJB components. Since enterprise
beans are the focus of this article, we’ll
take a closer look at this environment.

The EJB Development Environment
You can use this specialized environ-

ment to develop and test enterprise
beans that conform to the EJB specifica-
tion. In the VisualAge for Java Work-
bench, the EJB page is the heart of this
environment. It’s where all your enter-
prise beans and related components
reside, and it’s where you accomplish all
your enterprise bean development activ-
ities. In the EJB page (shown in Figure 1)
you can access and run the EJB Develop-
ment Environment tools, as well as write
and edit any required business logic.

The EJB Development Environment
tools simplify your development tasks by
generating most of the infrastructure code
for your enterprise beans. Specifically, they:
• Create EJB groups to hold your enter-

prise beans.

This article, which discusses some of the implications
of EJB development, includes a tutorial that allows
hands-on sampling of some EJB development tools by
installing the IBM VisualAge for Java CD found in next
month’s issue of JDJ.

99JUNE 2000

Java COM

Softwired
www.sofwired-inc.com/ibus

V I S U A L A G E R E P O S I T O R Y

Java COM

100 JUNE 2000

• Create new session enterprise beans or
entity (BMP or CMP) enterprise beans.

• Inherit properties from other enter-
prise beans (e.g., CMP fields, meth-
ods, control descriptor attributes).

• Import existing enterprise beans.
• Add home and remote interfaces.
• Build persistence into enterprise

beans by adding, defining and map-
ping CMP fields.

• Create and map associations between
CMP entity beans.

• Set deployment and control descriptors.
• Generate deployed classes.
• Create and edit access (adapter) beans.
• Verify that enterprise bean code is

consistent and conforms to the EJB
specification.

• Maintain source code and generated
code using the built-in team and ver-
sioning capabilities.

• Test and debug enterprise beans using
a generated test client and a test server.

• Export your code for deployment to
production servers.

Although all elements of the EJB
Development Environment play an
important role, access beans and the test
client warrant some special attention.

Access beans, sometimes known as
adapter beans, serve as JavaBean wrap-
pers for your enterprise beans. Generat-
ed by a wizard and typically used by
client programs such as JSP files,
servlets or even other enterprise beans,
they allow you to hide the home and
remote interfaces of an enterprise bean
and adapt them to the JavaBeans pro-
gramming model. This simplifies the
interface between enterprise beans and
servlets or JSP files by providing a Java-

Beans interface that’s recognized by all
Java developers. Access beans introduce
advanced local caching of enterprise
bean attributes, which reduces the
number of remote calls and provides
faster access to enterprise beans.

The test client is an application you
can generate automatically and run to
test each enterprise bean that’s running
in the EJB test server. It features its own
user interface and allows you to test
individual methods in the home and
remote interfaces of an enterprise bean.
It makes testing enterprise beans as easy
as testing local Java programs and saves
you the effort of coding your own test
client.

More detailed information about the
EJB Development Environment and
other WebSphere tools is found in “Web-
Sphere Support in VisualAge for Java 3.0”
at www.software.ibm.com/vad.

The Tutorial
In this tutorial you’ll create and test

an enterprise bean using some of the
core tools in the EJB Development Envi-
ronment. For our purposes assume that
a small, unnamed bank has asked you to
develop a simple banking application
where, for “tax purposes,” information
about customer bank accounts is limit-
ed to a bank account number and the
balance in the account.

You decide to create an enterprise
bean that enables customers to create
their own bank accounts and specify the
account numbers, query their bank bal-
ances, and make deposits and with-
drawals. (Customers should also be able
to delete their accounts in case they

suddenly need to take an extended trip
out of the country!)

Since data in a bank account needs
to persist after a customer banking ses-
sion ends, you need to create an entity
enterprise bean. You don’t want to spend
a lot of time writing the logic required to
store the data, so you decide to use a
container-managed persistence (CMP)
entity bean, which delegates the data
storage tasks to its container.

Since you’re a Java whiz and familiar
with EJB technology, you know that creat-
ing, finding and deleting accounts are
handled by the home interface of the
enterprise bean, which extends the
javax.ejb.EJBHome interface defined by
the EJB specification. You also know that
depositing, withdrawing and obtaining a
balance are handled by the remote inter-
face of the enterprise bean, which
extends the javax.ejb.EJBObject interface.
(This interface contains the business
methods that a client application can call
on an enterprise bean. The client applica-
tion has access only to the methods that a
developer chooses to expose through the
remote interface. It doesn’t have direct
access to the enterprise bean.)

Now you know the “history” behind the
tutorial, you’re ready to begin your short
odyssey into enterprise bean development.

Step 1: Prepare for the tutorial.
To allow you a hands-on experience

of the tutorial, next month’s issue of JDJ
includes the following two CDs:
• IBM VisualAge for Java, Entry Enter-

prise Edition for Windows
• IBM DB2‚ Universal Database Person-

al Edition for Windows

To continue with the tutorial, you
need to install these products, create the
sample database and perform some
basic setup tasks. Installation and setup
instructions for the tutorial can be
found at www.ibm.com/software/vadd/
homedata/va-db2.

Step 2: Create the project and package.
Now that you’ve finished preparing

for the tutorial, you can create the proj-
ect and Java package. (A project is a
receptacle used to hold a collection of
related Java packages, much like a direc-
tory in the file system.)
1. Open the VisualAge for Java Work-

bench, click the Projects tab, then
click the Add New or Existing Package
to Workspace icon.

2. In the Add Package SmartGuide Proj-
ect field, type SimpleEJB.

3. In the Create a new package named
field, type netbank.

4. Click Finish. The new project and
package are added to the Workbench.FIGURE 1 The EJB page

101JUNE 2000

Java COM

Kl Group Inc
www.klgroup.com/greats

Java COM

102 JUNE 2000

V I S U A L A G E R E P O S I T O R Y
Step 3: Create an EJB group.

In this step you create an EJB group,
which is simply a receptacle to hold and
organize related enterprise beans.
1. Click the EJB tab to open the EJB page

of the EJB Development Environment.
2. Click the Add EJB Group icon to open

the Add EJB Group SmartGuide.
3. In the Project field, type SimpleEJB,

and in the Create a new EJB group
named field, type BANK.

4. Click Finish to generate the code into
the associated project.

Step 4: Create the enterprise bean.
Now that the EJB group is created,

you can create the enterprise bean.
Since you need to store persistent data
for the account balance and you don’t
want to write your own logic to store the
data, you’ll create a CMP entity bean.
1. Click the Add EJB Bean icon to open

the Create Enterprise Bean Smart-
Guide.

2. In the Bean name field, type Account.
(AccountBean appears as the default
entry in the Class field.)

3. In the Bean type field, select Entity
bean with container-managed persis-
tence (CMP) fields.

4. Click Next. The Define Bean Class
Attributes and Interfaces page appears.
(Note that, by default, AccountHome is
displayed in the Home interface field,
Account is displayed in the Remote
interface field and AccountKey is dis-
played in the Key class field.)

5. Ensure that the Create helper finder
interface to support finder methods
checkbox has been selected.

6. Click Add beside the Add CMP fields
to the bean list box to open the Cre-
ate CMP Field SmartGuide. You’ll use
this SmartGuide to set up the fields
to store the bank account number
and the balance in the account.

7. In the Field Name field, type prima-
ryKey, then, in the Field Type field,
select java.lang.String. This field will
be used to find or create new
instances of AccountBean.

8. Select the Key Field checkbox, then
click Finish to add the CMP field and
close the SmartGuide.

9. Open the Create CMP Field Smart-
Guide again so you can add another
CMP field to store the balance in the
bank account. In the Field Name
field, type balance. Beside the Field
Type field, click Browse to open the
Field Type dialog box, then, in the
Pattern field, type BigDecimal and
click OK to close the dialog box.

10. In the Initial Value field, type new
java.math.BigDecimal(0). Ensure
that the Access with getter and setter
methods checkbox is checked and
that the public radio buttons are
selected for the getter and setter
methods. (In Java, field values are
retrieved by a getter method and set
with a setter method. The Smart-
Guide generates the code to both get
and set the balance in the account.)

11. In the Create CMP Field SmartGuide,
click Finish to add the CMP field.
The Define Bean Class Attributes
and Interfaces page should now look
like Figure 2.

12. Click Finish to generate the enter-
prise bean.

The code in Listing 1 appears in the
Source pane.

Step 5: Add the required methods.
Now you need to add some new

methods so you can deposit and with-
draw from the account.
1. In the Types pane of the EJB page,

select AccountBean.
2. Click the Create Method or Construc-

tor icon to open the Create Method
SmartGuide.

3. Ensure that Create a new method is
selected, then click Next to open the
Attributes SmartGuide.

4. In the Method Name field, type
deposit, then, beside the Return Type
field, click Browse to open the Field
Type dialog box.

5. In the Pattern field, type BigDecimal
and click OK to close the dialog box.

6. Now you’re ready to add and define a

parameter for the amount of money
to be deposited in the account. Click
Add to open the Parameters dialog,
then, in the Name field, type amount.

7. Select the Reference Types radio but-
ton, then, in the field below, type
BigDecimal to specify BigDecimal as
the return type.

8. Click Add, then click Close to close the
Parameters dialog.

9. Select Finish to generate the code.
The method will take the BigDecimal
value amount as a parameter, then
return an updated BigDecimal value
balance.

The following code appears in the
Source pane:

public java.math.BigDecimal

deposit(java.math.BigDecimal amount)

{

return null;

}

Step 6: Implement the deposit and with-
draw methods.

Next, you implement the deposit and
withdraw methods to perform the busi-
ness logic. The deposit method will
retrieve the current balance using the
getBalance method, add the input
amount to the balance, then use the set-
Balance method to store the new bal-
ance.
1. In the Source pane replace the exist-

ing code with the following code:

public java.math.BigDecimal

deposit(java.math.BigDecimal amount)

{

setBalance(getBalance().add(amount));

return balance;

}

2. In the Source pane right-click and
select Save.

3. In the Source pane add the withdraw
method to the program by changing
the word deposit to withdraw, then
changing the word add to subtract.

4. In the Source pane right-click and
select Save to create the withdraw
method.

Step 7: Promote the methods to the
remote interface.

Now that you’ve finished your Java
coding, you need to promote the getBal-
ance, deposit and withdraw methods to
the remote interface so you can manage
your account. (Note that you don’t pro-
mote the setBalance method to the
remote interface. This would enable
customers to set their own bank balance
for any amount they like!)

FIGURE 2 The Define Bean Class Attributes and
Interfaces page

103JUNE 2000

Java COM

OOPSLA 2000
www.oopsla.acm.org

104

V I S U A L A G E R E P O S I T O R Y

AUTHOR BIOS
Lucy S. Barnhill is a

development manager at
the IBM Research Triangle

Park facility in Raleigh,
North Carolina. She

manages the
Development and

Information Development
teams working on

VisualAge persistence
tools.

Angus McIntyre is the
marketing manager for

VisualAge for Java. He has
16 years of experience at

the IBM Toronto Lab.

Rob Stevenson, an
information developer at

the IBM Toronto Lab,
writes online help and

publications for the
VisualAge for Java

product.

1. In the Members pane right-click the
getBalance method and select Add to >
EJB Remote Interface. An icon appears
beside the method to indicate that it’s
now part of the remote interface.

2. Using the same procedure, add both
the withdraw(BigDecimal) and de-
posit(BigDecimal) methods to the re-
mote interface.

Step 8: Generate the schema, map and
database table.

Since your EJB group now contains
an enterprise bean, you can use the top-
down approach to generate a schema
and map from the EJB group. In this
approach the enterprise bean design
determines the database design. The
generated schema contains one table
for each CMP entity bean in the EJB
group. In the table each column corre-
sponds to a CMP field and the generated
mapping maps the field to the column.
1. Open a Windows NT command win-

dow and issue a db2start command to
ensure DB2 is running.

2. In the Enterprise Beans pane right-
click the BANK group and select Add >
Schema and Map from EJB Group.
This creates the default schema.

3. Click the Open Database Schemas
Browser icon to open the Schema
Browser. In the Schemas pane select
BANK, then, in the Tables pane, select
Account. This displays the columns in
the table.

4. To export the schema, from the
Schemas menu select Import/Export
Schema > Export Entire Schema to
Database. The Database Connection
Info dialog box opens.

5. In the Connection Type field, select
COM.ibm.db2.jdbc.app.DB2Driver.

6. In the Data source field, type
jdbc:db2:sample, then click OK. The
Console window opens to confirm

that an Account table was created
with a primaryKey column for the
account number and a balance col-
umn for the balance in the account.

7. Close the Schema Browser.

Step 9: Generate the deployed code and
the test client.

Now you need to generate the de-
ployed code, which consists of the home
interface code and the communications
code (stubs and ties) that serves as the
middleware used to connect the client to
the server. You also need to generate the
test client to test the enterprise bean.
1. In the Enterprise Beans pane right-

click BANK, then select Generate >
Deployed Code and wait for the code
to be generated.

2. In the Enterprise Beans pane right-
click BANK again and select Generate
> Test Client. This automatically gen-
erates the test client code and a
default user interface so you can test
the enterprise bean without coding a
full-blown user interface.

Step 10: Publish the enterprise bean to
the EJB test server.

Now that you’ve generated a test
client, you need to publish the enter-
prise bean to the EJB Server Configura-
tion browser, set some properties, then
start the required servers.
1. In the Enterprise Beans pane right-

click BANK and select Add To > Server
Configuration. The EJB Server Config-
uration browser appears.

2. In the Servers pane right-click Persistent
Name Server and select Start Server.

3. In the Console window ensure that
the Persistent Name Server process is
selected in the All Programs pane and
wait until the message “Server open
for business” appears in the Output
pane. (If the Persistent Name Server
fails to start and you’re using a discon-
nected laptop computer, install the
loopback adapter from your Windows
NT CD, configure it, then try starting
the Persistent Name Server again.)

4. In the Servers pane of the EJB Server
Configuration browser, right-click EJB

Server (server1) and select Properties
to open the Properties dialog box.

5. In the Data Source field change the
existing value from jdbc:db2:sample-
DB to jdbc:db2:sample.

6. In the Connection Type field, ensure
that COM.ibm.db2.jdbc.app.DB2Dri-
ver is selected, then click OK to close
the dialog box.

7. Right-click EJB Server (server1) and
select Start Server. In the Console
window select the EJB Server process.
Wait until the message “Server open
for business” appears.

Step 11: Run the test client.
1. In the EJB Server Configuration

browser expand the BANK group and
select the Account enterprise bean,
then click the Run Test Client icon.
The Connect page of the test client
appears.

2. On the Connect page click the Con-
nect button. The Home interface page
appears.

3. Ensure that create(String) is selected,
then, in the Parameters field, type
Acct355 and click Send. This creates
an instance of a bank account with
Acct355 as the primary key. The
Remote interface page appears.

4. Ensure that the deposit(BigDecimal)
method is selected, then click New to
open the Constructors dialog.

5. Select the constructor new BigDeci-
mal(String), then, in the Parameters
field, overtype the null value with the
value 4500.00.

6. Press Send, then press Done to close
the Constructors dialog.

7. In the Remote interface page press
Send. In the Result display field a
message confirms that the amount of
4500.00 has been deposited into the
account, as shown in Figure 3.

Congratulations! You’ve just created
and tested a fully functional enterprise
bean that you can use in the simple
banking application requested by that
small, unnamed bank!

lucysb@us.ibm.com / rstevens@ca.ibm.com / mcintyre@ca.ibm.com

import java.rmi.RemoteException;
import java.security.Identity;
import java.util.Properties;
import javax.ejb.*;
/**
* This is an Entity Bean class with CMP fields
*/

public class AccountBean implements EntityBean {
public java.math.BigDecimal balance = new java.math.BigDecimal(0);
private javax.ejb.EntityContext entityContext = null;
public java.lang.String primaryKey;
final static long serialVersionUID = 3206093459760846163L;
}

Listing 1

FIGURE 3 Remote Interface page of the test client

JUNE 2000

Java COM

105JUNE 2000

Java COM

Starbase
www.starbase.com

Java COM

106 JUNE 2000

Sterling
Software

www.cooljoechallene.com

107JUNE 2000

Java COM

Sterling
Center Spread

p/u

Java COM

108 JUNE 2000

Mo s t
W e b -
based

applications today
confine users to the

frame of their browser,
restricting them to viewing

only one Web page at a time.
Technologies such as JavaScript

make additional browser windows pos-
sible, but this approach doesn’t enable the

kind of customized menus, toolbars and windowing
features available in a traditional client/server application.

Java Swing provides additional capabilities such as the ability to create win-
dows outside the browser that have the look and feel of a traditional client
application. The techniques described in this article can be used to migrate
traditional client/server applications to a Web-based environment.

Event-monitoring applications that display and continuously update
event information in real time stand to benefit from such an approach.
For example, applications that monitor changes in financial data, net-
work activity or weather conditions and require the continuous display
of information must be updated in real time based on events occurring
on the server. These applications usually require long-running applets
that monopolize the browser, which in a Web-based environment oblig-

J D J F E A T U R E

Java Swing
components
allow you to execute
applets inside the secured
well-defined browser environment
while creating an effective GUI
outside the browser’s frame

WRITTEN BY THOMAS CZERNIK & ROLF KAMP

SELF-CONTAINED

CL
IE

NT APPLETS USING SW
IN

G

109JUNE 2000

Java COM

Fiorano
www.fiorano.com

Java COM

110 JUNE 2000

es users to open a second instance of the browser if they want to view
additional information. This creates a need for Web-based applications
that behave similarly to typical client/server multiwindowing applica-
tions because these don’t monopolize the browser window space.

A combination of Java Swing and CORBA provides the ability to build
applications of this nature, referred to as “self-contained client applets.”
These applets use CORBA to communicate with a server in real time and
Java Swing to create an effective GUI. Java-enabled Web browsers act as
a common platform from which applets using CORBA may be launched.
Once the self-contained client applet is launched, the user has the
option of visiting other Web pages or minimizing the browser.

One integral part of this applet is the use of CORBA, as demonstrated
in our November 1999 article “Real-Time Web-Based Applications with
Java and CORBA” (JDJ, Vol. 4, issue 11). An ORBlet-enabled Web browser
permits the execution of CORBA-enabled applets.

The CORBA callback is a well-defined, easy-to-use technique for
developing real-time, Web-based clients. Clients wanting to receive real-
time data register with the server by passing it a client object reference.
The server stores a reference to each client that receives data in real time.
As the state of the server changes, client references in the server are used
to send data to the client. Callbacks are an effective way to have clients
receive data from the server without having to poll the server. Another
approach that can be used to notify clients of events is the CORBA-
defined Event Notification Service. Remember to keep performance
requirements in mind when deciding which approach to use.

Swing components allow you to execute applets within the secured,
well-defined browser environment while creating an effective GUI out-
side the browser’s frame. Applets that create windows outside the brows-
er’s frame make it possible for users to view other Web pages or minimize
the browser as the applet executes. Combining applets and CORBA
allows an application to behave like a traditional client/server without
requiring any software installation or configuration on the client. The
user simply accesses a Web page containing a CORBA-enabled applet
that binds to the CORBA server, establishing a client/server connection.
Creating applications in this manner gives you the best of both worlds
and allows you to create powerful, effective applications.

Overview of Swing
In an effort to make Java more consistent across platforms, the Java

Foundation Classes were created jointly by Sun Microsystems, IBM,
Netscape and Lighthouse Designs (now a part of Sun Microsystems). JFC
is a suite of GUI classes that includes Abstract Windowing Toolkit (AWT),
Drag and Drop, Java 2D, Accessibility and Swing. Based on AWT and
written entirely in Java, Swing provides users with a GUI that looks con-
sistent across platforms and provides developers with a GUI that per-
forms identically across platforms. JFC is part of Java 2 and can be inte-
grated with any JDK version newer than 1.1.5.

Java Swing components are based on Netscape’s Internet Foundation
Classes. Written in Java, the IFC was created to simplify the creation and
management of Java GUI components and greatly extends the AWT. The
AWT Container class was extended by Swing with the introduction of the
JComponent, the superclass of most Swing components. This class is a
member of the javax.swing package.

A “J” precedes all component classes in Swing – JLabel, JButton, JTree
and so on. Classes derived from JComponent provide various character-
istics including platform-independent presentation, shortcut keys
(termed mnemonics) and common event-handling capabilities. Swing
components derived from JComponent are written entirely in Java and
their look and feel are independent of the platform they’re executed on,
which is why they’re termed lightweight (see Figure 1).

A Java program that uses AWT has a different look and feel depend-
ing on the platform it’s being executed on. Running on a Macintosh, it
looks and feels different from the same program executing in a Microsoft
Windows environment. These differences may cause a GUI component
to vary drastically in appearance depending on which platform the com-
ponent is used on – the amount of space a component occupies may dif-

fer, for example. Swing’s creators took the best features of existing GUIs
and implemented them in a look and feel termed Metal – Swing uses it
by default – that delivers a uniform look and feel across platforms.
There’s also a Windows or a Motif look and feel that you can specify. The
Swing class javax.swing.UIManager is used to manage the default look
and feel of a Java Swing program.

Not all “J” classes are lightweight. The Swing containers JFrame, JDi-
alog, JWindow and JApplet are heavyweight containers. These classes are
derived not from JComponent but from an AWT class and they’re termed
heavyweight because their presentation is less flexible than lightweight
components and is linked directly to the native platform’s windowing
system. These components are constrained (or weighed down) to the
native platform’s GUI capabilities. Heavyweight components don’t nec-
essarily perform or look the same on different platforms. The heavy-
weight component’s AWT peer manages the interactions between the
native platform and the Swing component (see Figure 2).

Model-View-Controller
One distinct advantage Swing has over AWT is its employment of the

Model-View-Controller (MVC) design pattern (see Figure 3). This design
pattern, employed when using object-oriented techniques with user inter-
faces, was first introduced with Smalltalk. In MVC there are three objects:
the model, view and controller. The model has nothing to do with the pre-
sentation of data, but with the essential data attributes and their associated
values. It notifies views interested in the model when data values change.
The presentation or appearance of the user interface is the view object – this

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JLabel javax.swing.JList

java.lang.Object

FIGURE 1 Inheritance diagram for Swing lightweight components

java.awt.Component

java.awt.Container

java.swing.JComponent

java.lang.Object java.lang.Object

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window java.awt.Panel

java.awt.Frame

javax.swing.JFrame javax.swing.JApplet

java.awt.Applet

FIGURE 2 Inheritance diagram for Swing heavyweight components

111JUNE 2000

Java COM

Certicom
www.certicom.com

Java COM

112 JUNE 2000

ensures that the presentation of the model is accurate. As the view object
receives notification that a model has changed, it updates the appearance.
Any number of views may be associated with a model. For example, one
model may be displayed with views as a pie chart, graph or spreadsheet. The
controller object manages how the user interface responds to user interac-
tions, such as a button press or movement of a mouse.

The view and controller objects play less of a role in Web-based appli-
cations than in typical desktop user interfaces. The view object is less
significant because most Web-based clients must poll for the current
state of the model. Except rarely, the model object doesn’t notify the view
object when a value has changed. The controller object is less significant
because Web-based applications have less user interaction than their
desktop counterparts. Accordingly, Swing fuses the view and controller
objects into a delegate object, a design called a separable model archi-
tecture. The delegate object both reacts to user interaction and presents
the model. Each component’s delegate is derived from the ComponentUI
class. For example, the JButton component uses a ButtonUI class and
the JLabel component uses a LabelUI class, both of which are derived
from the ComponentUI class. These are known as the pluggable look and
feel interfaces (see Figure 4). Methods in this class – e.g., paint, updateUI
– deal with the appearance of a component.

Description of a Self-Contained Client Applet
To illustrate the concept of a self-contained client applet we’re going

to use the example of a building-monitoring system. This is a system for
monitoring the security, temperature and power within a building. The
server receives events from telemetry equipment, records them, corre-
lates them when possible and reports them to the building-monitoring
clients registered with the server.

When the monitoring client applet is downloaded and started, the
main monitor menu is displayed in the browser. The menu contains
items such as file, edit, view and help. A “peel- off” menu created from the
main menu causes the applet to peel itself from the browser and act as a
stand-alone window. Users may perform various actions that create win-
dows within the application – e.g., they can customize the monitoring
client to view particular areas of a building or the entire building. A panel
containing an event list displays each room or section of the building.

The room name and time of the latest event is displayed at the top of
each panel. Events are color-coded based on their importance. If, for

example, the room temperature were configured at 70 degrees and the
temperature rose to 75 degrees, a minor event would be generated and it
would appear as a yellow button within the list. But if the temperature were
to rise above 80 degrees it would become a major event and would appear
as a red button. To help them understand the events, users can click on any
one of these buttons and a separate detail window will pop up.

Users can acknowledge the event to indicate they’re currently inves-
tigating it and can enter notes about events at any time. Once an event
has been resolved, the user can clear it. A user can have several windows
open simultaneously and navigate between them, or minimize any one
of them. The monitoring windows will be updated in real time as events
are received from the server, even if the monitoring window isn’t the cur-
rent active window. Even though these actions are performed by an
applet running in the confinement of the browser’s environment, the
behavior appears as though it’s a typical multiwindowing client/server
application executing outside the browser. All GUI and communication
components required by the application are encapsulated within the
downloaded self-contained client applet.

Comparing Applet and JApplet Classes
In lieu of the java.awt.Applet class, the com.sun.java.swing.JApplet

class is used for support of Swing components. Extended from
java.awt.Applet, the com.sun.java.swing.JApplet class is a heavyweight
component since it isn’t extended from the JComponent class. One of
the differences between the com.sun.java.swing.JApplet class and the
java.awt.Applet class is that it supports the JMenuBar Swing component
and Swing lightweight components.

Components aren’t added directly to a JApplet, as they are to an Applet.
Swing heavyweight components use the com.sun.java.swing.JRootPane
class to manage their operations. The JRootPane class, the only child of
heavyweight components, is obtained by using the heavyweight compo-
nent’s getContentPane method. The JRootPane returned by the getCon-
tentPane method is used to add components to the heavyweight contain-
er. Components added to lightweight containers are added directly to the
container using the add method of the container concerned.

For example, you add a JPanel to a JApplet as follows:

public class demoClass extends JApplet {

public void init() {

JPanel panelToAdd = new Jpanel();

getContentPane().add(panelToAdd);

}

}

The JApplet class makes use of the BorderLayout, rather than FlowLay-
out, as the default LayoutManager – as does the Applet class. Just as with
adding components, the getRootPane method is used to set JApplet’s lay-
out manager. For example, to set a JApplet’s layout manager to BoxLayout:

public class demoClass extends JApplet {

public void init() {

getContentPane().setLayout(new BoxLayout());

}

}

Creating Menus with Swing Components
One element of our example that runs inside the browser frame is the

main menu. This is an excellent example of creating a GUI using com-
ponents as building blocks. A menu bar, created by using the JMenuBar
class extended from the JComponent class, consists of any number of
JMenu objects, each one with any number of pull-down menu items that
can be selected with either a mouse click or a keyboard shortcut.

The JMenu class provides methods for creating menus that contain
menu items. The JMenuItem class provides methods for creating menu
items contained within a JMenu. JMenuItem objects allow users to

java.swing.JComponent

java.lang.Object java.lang.Object

Model

View Controller

Delegate (ComponentUI)

FIGURE 3 The Model-View-Controller design pattern as used in Swing

java.awt.Container

java.swing.JComponent

java.lang.Object java.lang.Object

java.lang.Object

javax.swing.plaf.ComponentUI

javax.swing.plaf.ButtonUI javax.swing.plaf.LabelUI

FIGURE 4 Inheritance diagram for Swing pluggable look and feel interfaces

113JUNE 2000

Java COM

YouCentric
www.youcentric.com/nobrainer

Java COM

114 JUNE 2000

request program functionality by being selected. In the example appli-
cation, the selection of the “view as a separate window” JMenuItem
causes a main menu to be peeled off the browser and appear outside the
browser’s frame.

JMenuItems may contain a text label or an icon. A number of con-
structors exist for the JMenuItem class, permitting the specification of a
label or icon. The default constructor may be used to create a JMenuItem
at one point in the code, then set the label later by using the setText
method. The example code will create a fully populated JMenuBar, start-
ing with the creation of JMenuItems with a label:

JMenuItem newMenu = new JMenuItem("New");

JMenuItem openMenu = new JMenuItem("Open");

JMenuItem saveMenu = new JMenuItem("Save");

The JMenu class has three constructors. A JMenu may be instantiated
(1) with no label, using the JMenu default constructor, (2) with a label using
the JMenu constructor with a String or (3) with a label and boolean variable
indicating the state of the JMenu. A number of JMenu classes will be instan-
tiated here with a label. These will contain the JMenuItems created above.

JMenu fileMenu = new JMenu("File");

JMenu editMenu = new JMenu("Edit");

JMenu toolsMenu = new JMenu("Tools");

JMenu helpMenu = new JMenu("Help");

JMenuItems are added to a JMenu with the add method:

fileMenu.add(newMenu);

fileMenu.add(openMenu);

fileMenu.add(saveMenu);

Finally, a JMenuBar will be created to contain the JMenus. The
JMenuBar has one constructor, the default constructor:

JMenuBar menuBar = new JMenuBar();

JMenus are added to the JMenuBar with the add method:

menuBar.add(fileMenu);

menuBar.add(editMenu);

menuBar.add(helpMenu);

menuBar.add(toolsMenu);

The Observer Design Pattern and Events in Java
JDK 1.1 introduced the delegation-based event-handling mecha-

nism. Also known as the publish-subscribe model, it’s based on the
Observer design pattern, used when consistency is to be maintained
between objects. Java implemented the Observer design pattern by cre-
ating Subject and Observer objects. The Subject maintains a list of
Observers that are notified when the Subject’s state changes. This set
may contain one or more Observers. Observers provide an interface
through which the Subject notifies them of a state change. As the
Observers are notified of this change, they can examine the Subject to
determine how they should behave. In this scenario there’s very low cou-
pling between the Subject and Observer objects since the Subject is
unaware what information the Observer object needs or how it behaves.

In Java, Subjects must create an event extended from the
java.util.EventObject. In the example application the Subject is a JMenu-
Item that creates an ActionEvent derived from EventObject. Observers or
listeners must implement the java.util.EventListener interface. In this
example the actionPerformed method of the ActionListener interface,
extended from the EventListener, is implemented.

The addActionListener method is used to register an Observer or lis-
tener with a Subject or JMenuItem. If the listener were contained in a
class other than the class containing the JMenuItem, an instance of the

class would be created, then registered with the JMenuItem by using the
addActionListener method. In our example the class containing the lis-
tener is the same class that contains the JMenuItem:

openMenu.addActionListener(this);

Defining the actionPerformed method of the ActionListener inter-
face specifies an Observer or listener. This method is executed when the
ActionListener receives an action event generated by the Subject. One
listener can be associated with any number of JMenuItems. The Action-
Event class inherits the getSource method from the EventObject class.
This method returns the object that caused the event. In this case it’s
used to determine which JMenuItem caused the action event.

public void actionPerformed(ActionEvent e) {

if(e.getSource() == openMenu) {

// handle action event for openMenu JMenuItem

} else if(e.getSource() == peelMenu) {

// handle action event for peelMenu JMenuItem

}

}

Swing ToolTips
It’s often helpful to provide users with more information about a

menu item than the label in that item itself. All Swing lightweight com-
ponents inherit JComponent’s setToolTip method. This method may be
used to specify text that appears when the mouse remains over a Swing
component for a given period of time, helping users know what the com-
ponent is for. In our example we associate a tool tip with a JMenuItem,
but a tool tip may be associated with any Swing lightweight component.

newMenu.setToolTipText("Used to Create Something New");

Creating a Window Outside the Browser
Both JFrame and JApplet are heavyweight containers that can be used

in very similar ways. The JFrame container can be used to create a win-
dow that’s not visually contained within the browser. As a heavyweight
container, the JFrame will appear differently on different platforms. The
most noticeable difference between platforms will be the appearance of
buttons used to minimize, maximize and close the JFrame.

From the user’s point of view, once the JFrame is created, the applet
appears to be running independently of the browser. In reality, it contin-
ues to execute from within the browser and is restricted to behaving like
any other applet. Any connections the applet has to a server are still pre-
sent in a JFrame appearing outside the browser’s window. Once a win-
dow is created outside the browser’s window, users can visit other Web
pages or minimize the browser.

In Listing 1, if the peelMenu JMenuItem is selected, the event handler
for the peelMenu will cause a main menu to appear – not within the JAp-
plet, but within a JFrame outside the browser window. The steps to per-
form this task are identical to those you take to perform it within a JAp-
plet, with the exception of having first to create a JFrame. The
java.awt.Window method pack is called to lay out and position all com-
ponents contained in the Window at their proper size.

Description of Event Panel
A class that implements the ListSelectionListener interface is used to con-

tain each event panel. The valueChanged method in this interface is provid-
ed to handle activity when a JList selection value changes. A ListSelection-
Event object is received by the valueChanged method, which can be queried
to determine more information about the selection list that generated the
event. The Swing JList, a component used to create a multiple-selection list,
is used to display events occurring in each building section being monitored.
The JList is created, then associated with a renderer with the following calls:

115JUNE 2000

Java COM

Zucotto
www.zucotto.com

Java COM

116 JUNE 2000

class EventPanel extends Jpanel implements ListSelectionListener {

public EventPanel() {

JList list = new JList();

list.setCellRenderer(new ARenderer());

}

public void valueChanged(ListSelectEvent event) {

// handle selection list value change

}

}

Customizations to the JList include the specification of a horizontal
and vertical scroll pane, as needed:

JScrollPane scrollPane = new JScrollPane(list,

ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED,

ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);

After all customizations are made to the JList, it’s added to a JPanel
that also contains JLabels for the identification of the building section
(see Figure 5).

Cell Rendering
The ListCellRenderer interface is used to specify how a component

represents data in a list. The ListCellRenderer has one method, getList-
CellRendererComponent, that appropriately displays a data value. This
method receives the object being represented in the list and returns a
component used for rendering the item. This method is invoked each
time the cell is required to be repainted, such as when a window is
resized. Time-consuming operations, such as retrieving data from a
server or expensive GUI operations, shouldn’t be placed in the getList-
CellRendererComponent method. Server-side data may be cached in the
client for use by the getListCellRendererComponent method. A con-
structor for the class implementing the ListCellRenderer interface may
be used to perform time-consuming operations or operations that need
occur only once. To avoid performance degradation, for example, the
constructor of the ARenderer class in Listing 2 creates the borders and
fonts when the class is instantiated.

The method should contain only operations required to dynamically
change the appearance of the data being represented. For example, the
renderer may visually represent an object in different forms based on the
events and data it receives from a server. The getListCellRendererCom-
ponent method can be used to translate an integer value into text.

Another example: if an attribute of the object exceeds a certain value, the
background of the label can be set to a certain color (see Listing 2).

Summary
Java Swing introduces a new GUI architecture supported by a host of

GUI components that can be used to create effective GUI tools that look
and behave similarly to client/server windowing applications. Long-run-
ning applets can use these components to provide users with windows
outside the browser’s frame, permitting them to visit other Web pages and
thus making the use of the long-running applets more productive.

AUTHOR BIOS
Thomas Czernik is a member of AT&T’s technical staff with 18 years of systems development experience.
Tom holds an MS in computer science.

Rolf Kamp is a member of AT&T’s technical staff where he develops network operation software. An
adjunct faculty member at Brookdale Community College, Rolf holds an MS in computer science and an
MBA.

FIGURE 5 Windows created by a self-contained client applet running
outside the browser

JFrame menuFrame = new JFrame("MONITOR MENU");
NotifyMenu mainMenu = new NotifyMenu();
JPanel pPanel = new JPanel();
JLabel lLabel = new JLabel("MONITOR MENU");
Font lFont = new Font("Serif",Font.BOLD|Font.ITALIC,24);
lLabel.setFont(lFont);
lLabel.setForeground(Color.white);
pPanel.setBackground(Color.blue);
pPanel.add(lLabel);
menuFrame.setJMenuBar(mainMenu.getMenuBar());
menuFrame.getContentPane().add(pp);
menuFrame.pack();
menuFrame.show();

class ARenderer extends JLabel implements ListCellRenderer {
static Font f = new Font("Helvetica",Font.BOLD,10);
static SoftBevelBorder sbb = new SoftBevelBorder(Soft-
BevelBorder.RAISED);
static CompoundBorder cb = new CompoundBorder(new Matte-
Border(2,2,2,2,
Color.green),new SoftBevelBorder(SoftBevelBorder.RAISED));

public ARenderer() {
setOpaque(true);
setFont(f);
setForeground(Color.black);

}
public Component getListCellRendererComponent(JList l,

Object v, int i, boolean isSelected, boolean cellHasFocus) {
LocalEvent a = (LocalEvent)v;
setToolTipText(a.description);
setText(a.symbol);
if (a.severity == 0) {

setBackground(Color.gray);
} else if (a.severity == 1) {

setBackground(Color.cyan);
} else {

setBackground(Color.white);
}
}
// additional customization code…
return this;
}
}

Listing 2

Listing 1

czernik@att.com rfk@att.com

117JUNE 2000

Java COM

Codemarket
www.codemarket.net/specialoffer

E J B H O M E

P
ersistence Software, Inc., recently released the latest ver-
sion of its EJB server, PowerTier 6. It’s a little different from
your run-of-the-mill EJB servers, though.This JavaOne 2000
special-edition issue of EJB Home will enlighten you about
PowerPage, a hot feature that will put PowerTier 6 on every
EJB evaluator’s radar!

Use this latest version to instantly Web-enable your EJBs!

Let’s first understand why PowerTier
6 and PowerPage are such key ingredi-
ents in any large-scale, e-commerce
solution today.

The E-Commerce Dilemma
My company has worked with

numerous dot-coms this year, and most
have puzzled over the same dilemma:
How do we deliver a scalable, Web-
enabled application, using standards-
based technologies, in “Internet time”?

Four key items need to be addressed
in what I call the e-commerce dilemma:
1. Scalability
2. Web enabling
3. Standards-based technologies
4. Internet time (time-to-market)

Tackling an e-commerce application
generally involves give or take among
these four items. For instance, maybe
you decide to build a scalable, stan-
dards-based application, but it’ll take an
extra two months to get it fully function-
al and performance tested. Or maybe
you opt for scalability and time-to-mar-
ket, and choose a proprietary solution to
reach your product deadline successful-
ly. How do you address all four concerns
and still make an e-commerce applica-
tion in record time? There’s an answer to
this dilemma, and it’s called PowerTier 6.

PowerTier 6 to the Rescue
Two critical elements are key to solv-

ing the e-commerce dilemma:
• An EJB server for deployment of e-com-

merce components
• Model-driven development and code

generation

PowerTier 6 is a feature-packed appli-
cation server that delivers both elements
to solve the four key items of this dilemma.

MEETING THE SCALABILITY CRITERION
Building on top of its original patent-

ed caching technology for scalability,
the PowerTier 6 EJB server meets the
scalability demands that e-commerce
application and high-traffic sites
require. Around 90% of the traffic on the
Web is browsing (i.e., read only). Pow-
erTier’s shared cache provides a means
to read EJB data at in-memory speed
rather than disk speed. PowerTier 6
caches often-browsed data, improving
the speed at which useful information is
returned to the consumer. Timeliness
enhances users’ experience and pre-
vents them from surfing to another site
while waiting for responses from your
Web application.

PowerTier’s EJB server not only takes
advantage of its patented caching, it also
supports load balancing and fault toler-
ance of servers and EJB components.

MEETING THE WEB-ENABLED CRITERION
Persistence Software recently

acquired 10BaseJ and incorporated its
ServletMill product into the PowerTier 6
application server. ServletMill is written
entirely in Java and includes support for
Java Servlet API 2.1 and a JavaServer
Pages (JSP) engine that is compliant
with Sun’s JSP specification 1.0.

The PowerTier servlet engine, like
its EJB server, is highly scalable and
fault tolerant. It can run a servlet in
several “zones,” which are essentially
clusters of servlets. Zoning provides
scalability by routing user activity
across zones, ensuring that no single
servlet engine is overloaded with
requests. Also, ServletMill can fail over
the state of a user’s HttpSession. Fault
tolerance in the PowerTier servlet
engine is implemented by saving addi-
tions or updates to sessions on a
shared file system. When a zoned
servlet fails, another servlet retrieves

the session state and continues pro-
cessing the request.

The PowerTier servlet engine enables
the dynamic content from JSPs and
servlets to be displayed in HTML form for
your Internet application needs. For stat-
ic content PowerTier 6 bundles Apache
Web server and includes a plug-in for
Microsoft IIS.

PowerPage, PowerTier’s innovative
JSP generation feature, creates JSPs that
run in the PowerTier servlet engine.

MEETING THE STANDARDS-BASED TECHNOLOGIES CRITERION
PowerTier 6 is an application server

built on standard technologies such as
EJBs, JSPs and RMI-IIOP. Persistence is
also a J2EE (Java 2 Enterprise Edition)
licensee, further guaranteeing its loyalty
to standards. By building your e-com-
merce application with PowerTier 6,
you’ll be safely betting your develop-
ment and deployment environment on
industry-accepted standards, which will
reduce the cost and complexity of main-
taining your e-commerce solutions over
time.

MEETING THE “INTERNET TIME-TO-MARKET” CRITERION :
INTRODUCING POWERPAGE

PowerTier 6 is one of the few applica-
tion servers on the market to offer built-
in support and third-party add-ons to
ease your fledgling team into n-tiered
EJB development. PowerTier’s Object
Builder offers model-driven code gener-
ation for EJBs; with release 6 it also
incorporates a generation capability
from the model to JSPs called Power-
Page.

PowerPage automatically makes
your PowerTier entity beans accessible
from JSPs by generating all code neces-
sary for a browser-based application
with the click of a button. It allows
instant Web-access to a scalable, stan-
dards-based back end, allowing your

WRITTEN BY
JASON WESTRA

Java COM

118 JUNE 2000

PowerTier 6’s PowerPage

119JUNE 2000

Java COM

Verge Technologies
Group Inc

www.ejip.com

team to finish your product in Internet
time without worries of missed dead-
lines, supporting growth or losing time-
to-market.

I’ve briefly described how PowerTier
6 provides the critical components for
solving the e-commerce dilemma. For
the remainder of this article I’ll focus on
PowerPage and its feature set to help
you understand the role it can play in
your development efforts.

PowerPage – RAD for JSPs
The PowerPage rapid application

development (RAD) process follows the
same philosophy as PowerTier’s EJB
development process: a single object
model should drive development.
Model-driven development prevents
you from having to make multiple code
modifications to EJBs and JSPs in sup-
port of a single business domain change.

The PowerTier EJB and PowerPage
development process starts when you
design an object model with PowerTier’s
built-in Object Builder or with industry-
recognized tools like Rational Rose and
TogetherJ. Afterwards, you generate
your EJBs representing business entities
in the model and JSPs that represent the
front end of your Web application. Fig-
ure 1 details how the design and devel-
opment process with PowerTier 6 is
tightly coupled into a single, easy-to-use
toolset.

PowerTier’s patented generation
technology, PowerTier Object Builder
for PowerPage, can take multiple inputs
to drive the development of your EJBs
and JSPs. You can use a third-party mod-
eling tool or a database schema from top
industry RDBMS vendors for input, or
you can enter your model manually into
Object Builder. Output from Object
Builder for PowerPage is a Web-enabled
JSP application backed by PowerTier’s
renowned, scalable, EJB architecture.

Support for Iterative Development and
Customization

Iterative development is common-
place in today’s software development,

and Object Builder provides iterative
support through code insertion points
that represent areas within generated
code into which you can safely enter
custom logic. When you make a change
to your model and regenerate your EJBs
and JSPs, you won’t lose your custom
logic. Numerous RAD tools on the mar-
ket today don’t offer this option. They’re
one-stop shops that simply provide a
jump start through code generation but
no iterative capabilities throughout the
life cycle of development.

You can choose to regenerate only
JSPs or only EJBs, a nice option when
you already have an Object Builder EJB
model and want to quickly generate a
JSP front end to show a functional pro-
totype to management.

In addition, you can customize the
look-and-feel of your generated JSPs.
PowerPage generates what it refers to as
a Project.css file, which is a cascading
stylesheet for your HTML presentation.
This file can be modified to customize
the appearance of your application. You
may change presentation characteris-
tics like background color and font for
your project to give it a unique look-
and-feel.

Steps to Web-Enabling EJBs
Those of you who are avid readers of

EJB Home have heard this message
from me before: “EJB development is
not easy!” This holds true in the context
of a traditional EJB server; however,
PowerTier 6 with PowerPage has made
me eat my words to some extent. The
methodology and technology that Pow-
erTier uses to build a functional, Web-
enabled EJB application is dramatically
easier than any I have worked with
since EJB servers were first available in
1998.

Table 1 lists the tasks involved in cre-
ating an EJB application and Web-
enabling it with Java servlets or JSPs. As

Java COM

120 JUNE 2000

Browser
Clients

Manual
Input

Database
Schema Modeling

Tool
Server A

Server B

Database

DOL

Entity
Beans

JSPs

FIGURE 1 Creating JSPs and entity beans with PowerPage

TABLE 1 Steps to Web-enable your EJBs

POWERTIER 6
TASK TRADITIONAL EJB SERVER WITH POWERPAGE

Create entity beans Hand-code Automatically generated

Create database schema Hand-code Automatically generated DDL

Create JSPs or servlets Hand-code Automatically generated

Create JSP’s nonvisual JavaBeans
• String to data type conversion
• Data type validation Hand-code Automatically generated
• EJB Home lookups
• EJB Remote Method Invocations
• Etc.

E J B H O M E

121JUNE 2000

Java COM

Amazon.com
www.amazon.com

you can see, PowerTier 6 does the main
tasks for you through seamless genera-
tion; with traditional EJB servers you
have to perform each task manually.

Example Use of PowerPage
When I first heard about PowerPage,

I was eager to dig into the technology
myself. I don’t normally evaluate some-
thing with the vendor-provided exam-
ples. Instead, I create something from
scratch to test the process on my own.
I’ll walk you through the process I fol-
lowed and provide you with insights into
the PowerPage product along the way.

J-Term Registration
J-Term stands for January Term,

which is a monthlong term in some col-
leges during which students take only
one course and professors teach only
one course. To investigate the Power-
Page product, I built a simple J-Term
Registration application that allows the
entry of J-Term courses, teachers and
students. The UML model for the appli-
cation is as shown in Figure 2. I used
inheritance and associations to show
PowerTier’s ability to generate different
relationships between EJBs and map
them to database tables and JSP pages.

First I manually entered the classes
and relationships into the PowerTier
Object Builder (I could have used a
third-party tool for this step). After
Object Builder contained my model, I
marked two checkboxes to indicate I
wanted to generate both PowerTier EJB
and JSP files (see Figure 3). Then I select-
ed the File –> Generate Code menu item
and Object Builder’s generator created
both my EJBs and JSPs for the J-Term
Registration example.

With my J-Term EJBs, JSP files and
HTML files generated (see Figure 4), I
could have modified the stylesheet to
my liking – added custom code inside
code insertion points, or more JSP
scripting – but chose not to for this
example. Instead, I deployed the J-Term
Registration example as is into the Pow-
erTier 6 server and its bundled Apache
Web server, then started the PowerTier
server to test my auto-generated appli-
cation. My application functioned with
simple CRUD (Create, Read, Update,
Delete) functionality!

I didn’t get a chance to test round-trip
engineering with PowerPage generation.
I’m not sure how easy it is to add custom
code to a JSP or generated nonvisual
JavaBean, but my guess is that it’s just as
easy as adding code to generated EJBs.

PowerPage Limitations
PowerPage accesses entity beans

directly. This design conflicts with the
generally accepted entity bean wrapper
pattern. In this design pattern entity
beans aren’t accessed directly from
clients. Instead, session beans are used
to manage transaction semantics and
manipulate multiple entities in a single
business function.

I see PowerPage as a powerful feature
for developing Web-enabled e-com-
merce applications and functional pro-
totypes. However, I don’t believe it will
add as much value to large-scale enter-
prise efforts with disparate clients. These
applications require business processes
to be modeled as session beans in order
to encapsulate business logic and trans-
action boundaries for multiple client
platforms, not just browser clients. I look
forward to future product releases of
PowerTier to see if Persistence tackles
this market with a product as well engi-
neered as PowerPage.

I discovered some bugs in the initial
release as I was working with it, but was
not able to track the cause to PowerPage
or the newly integrated servlet engine
before the article deadline. Integrating a
servlet engine and creating a new JSP
feature in one release is a daunting task
to accomplish for any engineering

Java COM

122 JUNE 2000

E J B H O M E

FIGURE 2 UML model of J-Term registration application

FIGURE 3 PowerTier Object Builder

123JUNE 2000

Java COM

Elixir
Technology

www.elixirtech.com/download

E J B H O M E

Java COM

124 JUNE 2000

group. Nevertheless, PowerTier 6 is an
application server with a rich feature set.

Conclusion
PowerPage provides a bridge between

application server components and Web

pages – automating EJB access from Web
pages and eliminating tedious manual
coding. Together, PowerPage and Pow-
erTier Object Builder ensure faster de-
ployments by reducing development
time and increasing reliability and effi-
ciency of code.

The ability to preview application
functionality at any point in the devel-
opment process means better user
interfaces, more reliable products and
shorter project cycles. The underlying
PowerTier application server guarantees
the rapid response that will keep Inter-
net customers coming.

While in Silicon Valley last March, I
had a chance to meet with Chris
Keene, CEO of Persistence, as well as
their VP of engineering and the senior
engineer who developed PowerPage.
My impression of Persistence as a
company is that it is dedicated to pro-
viding end-to-end solutions that elim-
inate the learning curve for n-tiered,
enterprise Java development. This
commitment is evident in its acquisi-
tion of 10BaseJ to bundle a scalable
servlet/JSP engine in PowerTier 6 as
well as the engineering team’s innova-
tive approach toward Web-enabling
EJBs with PowerPage.

Reference
“PowerTier PowerPage: Instant Web

Access to Enterprise JavaBeans” – Contact
Persistence Software, Inc., at www.per-
sistence.com, to have a copy of the tech-
nical white paper sent to you.

FIGURE 3 HTML from the PowerPage-generated JSP westra@sys-con.com

AUTHOR BIO
Jason Westra is the CTO

of Verge Technologies
Group Inc., a Java

consulting firm
specializing in e-business
solutions with Enterprise

JavaBeans.

SYS-CON Radio
www.sys-con.com

125JUNE 2000

Java COM

?

S
ay you’re writing an Enterprise JavaBean that represents a persis-
tent object, such as a customer or a product. You have two choic-
es for getting data (such as customer name and product number)
from the bean to the database and back:

• You can let the bean’s runtime environment – its container, in EJB
speak – do the heavy lifting for you…

• …or you can provide the logic yourself along with your bean.

It seems like an easy choice. Why write code when you don’t need to?
Frequently, in fact, container-managed persistence will be a good match
for a project. However, if you want your bean to be portable across mul-
tiple EJB servers, or if you find that the container-managed persistence
provided by your chosen EJB server is inadequate, you’ll need to turn to
bean-managed persistence.

According to the current version of the Enterprise JavaBeans Specifica-
tion (v1.1), a compliant EJB container isn’t required to provide any support

for mapping the container-managed fields to a
database schema. For instance, it could use
Java serialization to save the beans to a file.
Most if not all commercial and open-source

containers will map fields to table
columns in a database. But some

will do it better than others.
You’ll have trouble with some

products, for example, if you
want to map your bean

to multiple rows in
multiple tables.

Java COM

126 JUNE 2000

J D J F E A T U R E

Your Enterprise JavaBeans will

probably manage dependent objects.

You need to save these objects

– cleanly and efficiently – in a

relational database.

This article tells you how.

WRITTEN BY DANIEL O’CONNOR

Bean-Managed
Persistence Using
a Proxy List

Bean-Managed
Persistence Using
a Proxy List

127JUNE 2000

Java COM

The
Middleware Company

www.middleware-company.com/info

Java COM

128 JUNE 2000

In fact, you probably do want to map your bean to multiple rows in
multiple tables. Your beans should be coarse-grained, managing their
own dependent objects. Your order bean should have line items imple-
mented as a helper class, rather than as references to line-item EJBs.
Your customer bean should have addresses rather than references to
address beans. The overhead of bean-to-bean calls between an order
and its line items, or a customer and its addresses, would be prohibitive.
Your EJB server can provide you with many services, such as declarative
transactions, security, and even load balancing and failover. But there’s
no free lunch, and the price you pay is indirection. Every call you make
goes through a layer whose purpose is to provide these services (see Fig-
ure 1). Managing dependent objects reduces the frequency of trips
through this indirection layer (see Figure 2). And a bean with multiple
dependent objects needs to be stored in multiple tables, in multiple
rows, if you want to maintain a normalized schema.

Technically, bean-managed persistence doesn’t mean you have to
write your own database access code. It just means the bean, rather than
the container, provides the persistence logic. Several good object-rela-
tional mapping tools are on the market, and they can be portable from
server to server along with your bean. But you may find it impossible to
use these tools because of cost (some have runtime fees and/or a hefty
per-developer price tag), distribution practicalities or reasons of your
own. This article will tell you what you need to do to write your own per-
sistence for a coarse-grained entity bean.

Requirements for Dependent Objects
An efficient implementation of bean-managed persistence for

dependent objects will have two features:
• Load-on-demand
• Partitioned storage logic

Load-on-demand means that the dependent objects aren’t loaded
until they’re actually needed. The EJB framework will call a function in
your entity bean to indicate that persistent data should be made avail-
able to the bean’s business logic. The bean could load the dependent
data at this point. But if the business logic doesn’t make use of certain
dependent data during the current transaction, that database access was
wasted. For instance, changing a customer’s credit rating may not
require access to any address, so the addresses shouldn’t be loaded. If the

dependent data is accessed, it can be loaded at that time. (This is also
known as lazy loading.) Partitioned storage logic is necessary so that the
bean updates the database the way a relational database expects: new
data is inserted, changed data is updated, discarded data is deleted and
unchanged data is left alone (see Figure 3). The alternative – wiping out
the records and reinserting them – is too horrible even to contemplate.

A Good Idiom
To implement load-on-demand, you could scatter calls throughout

your business logic to functions with names like “ensureAddressList-
Loaded” and “ensureLineItemListLoaded” – that is, if you want to be the
poster child for ugly code. And to store your dependent objects to the
database, you could have each object keep track of its status: NEW,
UPDATED, DELETED or UNMODIFIED. As you totaled the line items in
a purchase order, you’d need to check each object to see if it had been
deleted (see Figure 4). Don’t forget, or you’re going to have some unhap-
py customers.

A better idiom is to group the logic related to persistence with a col-
lection class. Your business logic for an order probably works with a list
of line items. To delete an object, the most natural thing to do is proba-
bly to remove it from the list. To add an object, the most natural thing is
to append it to the list. And simply calling a method on the list should
be the signal to your persistence logic that the items in the list need to
be loaded from the database. If you use a smart list that knows how to
do these things, nothing else needs to be done from the perspective of
the business logic programmer. In the example of totaling line items in
a purchase order, you’d simply iterate through the objects in the list
(see Figure 5).

Services Layer

Business
Object Subordinate

Business Objects

Client

FIGURE 1 Bean-to-bean method calls go
through a services layer.

Services Layer

Business
Object Managed

Dependent Objects

Client

FIGURE 2 Bean-to-dependent object calls are
lighter weight.

Ensure List Loaded

Iterate Over List

Test If Deleted

Add to Total

FIGURE 4 A naïve implementation mixes
business logic with persistence logic.

New

Changed
Discarded

Unmodified

Insert

DATA SQL SYNTAX

Update
Delete

FIGURE 3 Beans should perform updates the
way a relational database expects.

Iterate Over List

Add to Total

FIGURE 5 With the persistence logic in the collection class, the
business logic is simpler to code and maintain.

129JUNE 2000

Java COM

Elixir
Technology

www.elixirtech.com/download

Java COM

130 JUNE 2000

Behind the scenes, a smart list implementation is keeping track of an
“isLoaded” variable. When the list is accessed, it checks this variable first
to see if the data needs to be loaded from the database. If so, it loads it.
It keeps a set of references to all the objects it loads to distinguish them
from new objects added to the list. If an object is removed from the list,
it’s added to an internal list of deleted objects. This deleted objects list is
used by the persistence logic, but not, typically, by the business logic
programmer.

The Proxy List
The smart list needs a layer of indirection between the list interface

and the actual list storage. At this layer a method call on the list to
remove objects will first add those objects to the internal deleted objects
list. Also, a call to any function will check to see if the list data has been
loaded. One possible way to gain this indirection is simply to implement
the java.util.List interface and delegate the calls to a private internal
“backing” list. A more elegant way is to use the java.lang.reflect.Proxy
class newly available in JDK 1.3. (Note: Using the Proxy class limits your
bean’s portability to servers that support JDK 1.3. All the techniques and
code discussed in this article are easily adapted to the “delegation list”
compatible with earlier JDKs.)

The Proxy class dynamically creates an implementation of an interface
that will automatically forward all its calls to a middle layer called Invoca-
tionHandler (also in package java.lang.reflect). In a subclass of Invocation-
Handler you can forward the method call (or not), take action before or
after forwarding it, alter its parameters and change the returned object (see
Figure 6). As you can see, this is more than enough functionality to imple-
ment our smart list. The uses for this Proxy are many: it can be used to han-
dle user interface events and to provide a “poor man’s multiple inheri-
tance,” and has even been used to implement an open-source EJB server,
EJBoss. (For more information on the Proxy and InvocationHandler class-
es, see the article at http://java.sun.com/products/jfc/tsc/articles/generic-
listener2/index.html on Sun’s Web site.)

Take a look at ListInvocationHandler (see Listing 1). It’s the smart list
implementation that keeps track of deleted objects, the set of original
objects and whether the data has been loaded from the database. It also
takes as a constructor parameter its “backing” list so that any class
implementing the List interface (LinkedList or ArrayList) can be used,
depending on how the data is typically accessed. The main functionality

is in the invoke method. Here I check to make sure the data has been
loaded from the database. I also check for any List function that removes
an object so I can make a copy to use for calling “delete” later on the
database. An important point: several List functions will return a refer-
ence to the backing list unless these too are interposed on. Any method
that returns an Iterator (which points to the backing list) must instead be
made to return an Iterator pointing to the interposed list. I did this using
– you guessed it – another Proxy (see Listing 2). Any method that returns
a Collection must either be interposed on or made unmodifiable.

Persistence Details
My smart list implementation uses two persistence-specific inter-

faces (see Figure 7). The first, PersistentOperations (see Listing 3), is
implemented by the smart list itself (in ListInvocationHandler). It’s for
list operations needed by the bean’s persistence plumbing, rather than
the business logic. You can get a list of deleted objects to actually delete
them. You can get the set of original objects to decide between insert and
update operations. You can add an object to the list so that it’s tagged as
an original object rather than a new one. You can tell the list that the
bean has been asked to save itself to persistent storage, and to take what-
ever actions are necessary. For symmetry more than need, you can also
ask the list to load itself from persistent storage. Typically, you’ll let the
list decide this for itself.

The second persistence-specific interface used by the list is Data-
Store (see Listing 4). Although your business logic can treat the smart list
as a regular list, you need to put the SQL somewhere, and this interface is
the gateway to that “somewhere.” Your bean will pass an implementation
of this interface to the smart list factory (DemandListFactory; see Listing
5). When the list needs to save or restore its data, it will call methods in
this interface, passing a reference to its PersistentOperations interface.

Implementation Example
A simplified example of using a proxy list with an EJB with bean-man-

aged persistence is available on the Java Developer’s Journal Web site.
The bean implements a customer-has-line-items model. A customer has
an ID and a name, and an unlimited number of line items of products he
or she has ordered. In order to give the smart list a workout, I’ve written
functions so the business logic programmer can add, delete or change a

Invocation Handler

Client

Proxy

FIGURE 6 The Proxy/InvocationHandler
combination is a flexible tool.

DemandList

Bean

<<interface>>
DataStore

Contains

<<interface>>
PersistentOperations

FIGURE 7 The smart list uses two interfaces
to manage its persistence.

If you need to
roll your own

persistence for
EJBs, there’s no
better place for
the persistence

logic than a
collection class

‘‘

’’

131JUNE 2000

Java COM

JavaOne
Conference

http://java.sun.com/javaone

line item, and use the entire set of line items at once. The list is initialized
when the bean is created (a new customer record is inserted) or loaded
(an existing customer record is read from the database). An anonymous
DataStore implementation is passed to the DemandListFactory, which
will call bean methods whenever DataStore methods are called by the list.

One bean method will do a simple select on the database table where
line items are stored. As it iterates through the result set, it calls the Per-
sistentOperations’s addFromStore method, which will indicate to the list
that the object already exists in the database and needs to be updated,
not inserted, when the list is stored. Another bean method that stores the
list is only slightly more complicated. It must use the information avail-
able from the PersistentOperations interface to partition the objects into
three sets: insertions, updates and deletes. You’ll notice that I’m using an
isModified function to further partition updates from unmodified
instances. It’s possible to do this in the smart list as well by keeping a
copy of each original object and then comparing it to the object’s state
just before the database update. There are disadvantages to this tech-
nique, however, depending on the memory required to keep copies of
those objects and the processing time required to compare object states.
In any case, implementing this is beyond the scope of this article.

To test my Customer implementation, I’ve included a stateless ses-
sion EJB that will give it a good workout. Fronting an entity EJB with a
“business process” session, EJB is a common design pattern. Here it
allows us to include multiple adds, deletes, updates and totals within

one transaction. Since the typical EJB server will load and store persis-
tent data on transaction boundaries (load when the transaction begins
and store when it ends), this is important for our testing. Obviously, the
stateless session EJB isn’t a good example of an actual business
process.

Conclusion
It isn’t difficult to write an efficient, easy-to-use Enterprise JavaBean

using bean-managed persistence. Well, what I should really say is that it’s
not much harder than writing the SQL code that your bean will use. If
you need to roll your own persistence for EJBs, there’s no better place for
the persistence logic than a collection class. In this case we used a list,
but the same technique would work for a Set or a Map, or even a tree
document, depending on your needs. And if your target market allows
you to write to the JDK 1.3, the new Proxy class can increase the expres-
siveness and effectiveness of your code.

AUTHOR BIO
Daniel O’Connor is an independent software developer writing enterprise management software for the
not-for-profit field. He has a BA from Williams College and an MA from SUNY University at Albany.

Java COM

132 JUNE 2000

package orders.demandlist;

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.util.*;

public class ListInvocationHandler implements
InvocationHandler,PersistentOperations

{
private List backingList;
private DataStore dataStore;
private boolean dataLoaded = false;
private List deletedItems = new LinkedList();
private Set originalSet = new HashSet();

public ListInvocationHandler(List list,
DataStore dataStore)

{
this.backingList = list;
this.dataStore = dataStore;

}

public Object invoke(Object proxy,
Method method, Object[] args) throws Throwable

{
// persistent operations interface
if (method.getDeclaringClass().equals(

orders.demandlist.PersistentOperations.class
))

return method.invoke(this, args);
else
{

// list interface
if (!dataLoaded)
{

dataStore.load(this);
dataLoaded = true;

}
processDeletedItems(method, args);
Object obj = method.invoke(backingList,

args);
if (obj instanceof Iterator)
{

return DemandListIteratorFactory.
getDemandListIterator((Iterator)obj,
this);

}

else if (obj instanceof List)
{

return Collections.unmodifiableList(
(List)obj);

}
else

return obj;
}

}

// PersistentOperations implementation
public void loadFromStore()
{

dataStore.load(this);
}

public void saveToStore()
{

if (dataLoaded)
{

dataStore.persist(this);
originalSet.addAll(backingList);

}
}

public List getDeletedObjects()
{

return Collections.unmodifiableList(
deletedItems);

}

public Set getOriginalSet()
{

return Collections.unmodifiableSet(
originalSet);

}

public List getCurrentList()
{

return Collections.unmodifiableList(
backingList);

}

public void addFromStore(Object obj)
{

backingList.add(obj);
originalSet.add(obj);

}

Listing 1: ListInvocationHandler.java

docodan@nycap.rr.com

133JUNE 2000

Java COM

Simplex
Knowledge Company

www.skc.com

Java COM

134 JUNE 2000

// package protected iterator support
void notifyObjectRemoved(Object obj)
{

deletedItems.add(obj);
}

// implementation
private void processDeletedItems(Method method,

Object[] args)
{

String methodName = method.getName();
if (methodName.equals("clear"))
{

deletedItems.addAll(backingList);
}
else if (methodName.equals("removeAll"))
{

deletedItems.addAll((Collection)args[0]);
}
else if (methodName.equals("retainAll"))
{

List tempList = new LinkedList();
tempList.addAll(backingList);
tempList.removeAll((Collection)args[0]);
deletedItems.addAll(tempList);

}
else if (methodName.equals("remove"))
{

Class[] paramTypes =
method.getParameterTypes();

if (paramTypes[0].equals(Integer.TYPE))
{

Object obj = backingList.get(
((Integer)args[0]).intValue());

deletedItems.add(obj);
}
else
{

deletedItems.add(args[0]);
}

}
}

}

package orders.demandlist;

import java.util.*;
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Proxy;
import java.lang.reflect.Method;

public class DemandListIteratorFactory
{

public static Iterator getDemandListIterator(
final Iterator iterator,
final ListInvocationHandler invocationHandler)

{
InvocationHandler handler =

new InvocationHandler()
{

private Object cacheLastRetrieval = null;

public Object invoke(Object proxy,
Method method, Object[] args)
throws Throwable

{
String methodName = method.getName();
if (methodName.equals("next") ||

methodName.equals("previous"))
{

Object obj = method.invoke(
iterator, args);

cacheLastRetrieval = obj;
return obj;

}
else if (methodName.equals("remove"))

Listing 2: DemandListIteratorFactory.java

Ajile
Systems

www.agile.com

Computer-
Work.com
www.computerwork.com

135JUNE 2000

Java COM

{
Object obj = method.invoke(

iterator, args);
invocationHandler.notifyObjectRemoved(

cacheLastRetrieval);
return obj;

}
return method.invoke(iterator, args);

}
};

Class clazz = null;
if (iterator instanceof ListIterator)

clazz = java.util.ListIterator.class;
else

clazz = java.util.Iterator.class;
return (Iterator) Proxy.newProxyInstance(

java.util.List.class.getClassLoader(),
new Class[] { clazz }, handler);

}
}

package orders.demandlist;

import java.util.*;

public interface PersistentOperations
{

public void loadFromStore();
public void saveToStore();

public void addFromStore(Object obj);
public List getDeletedObjects();
public Set getOriginalSet();
public List getCurrentList();

}

package orders.demandlist;

import java.util.*;

public interface DataStore
{

public void load(
PersistentOperations persistOp);

public void persist(
PersistentOperations persistOp);

}

package orders.demandlist;

import java.util.*;
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Proxy;

public class DemandListFactory
{

public static List getDemandList(final List
list, final DataStore dataStore)

{
InvocationHandler handler =

new ListInvocationHandler(list, dataStore);

return (List) Proxy.newProxyInstance(
PersistentOperations.class.getClassLoader(),
new Class[] { List.class,
PersistentOperations.class }, handler);

}
}

Listing 5: DemandList Factory.java

Listing 4: DataStore.java

Listing 3: PersistentOperations.java

N-ary
www.n-ary.net

Java COM

136 JUNE 2000

SlangSoft
www.slangsoft.com

SlangSoft
www.slangsoft.com

137JUNE 2000

Java COM

C O R B A C O R N E R

D
eveloping distributed applications, in contrast to developing
traditional single-process applications, requires a completely
different level of monitoring and diagnostic support. In this

article I’ll discuss how to monitor and diagnose distributed
applications based on the CORBA standard.

Demystifying the CORBA communication bus to enable ‘distributed debugging’

WRITTEN BY
TODD SCALLAN

Monitoring and Diagnostics of CORBA Systems

Java COM

138 JUNE 2000

Perils of Distributed Applications
As organizations make key aspects of

their businesses ready and enabled for e-
business, multitiered distributed appli-
cations are becoming increasingly ubiq-
uitous. Diverse by nature, e-business
systems require middleware to integrate
middle-tier components into a cohesive
computing environment. And as object-
oriented programming has entered
mainstream application development,
CORBA has emerged as the standard
middleware solution for integrating dis-
tributed e-business components that are
implemented in disparate languages –
Java, C++ and others.

Distributed applications require a
completely different level of monitoring
and diagnostic support than traditional
single-process applications. While the
factors causing unexpected behavior and
failures in a single process might be sim-
ple and easy to anticipate, a distributed
system can suffer from any one or more of
a whole range of bugs. Let’s briefly review
seven of the most common problems:
• Performance bottlenecks can appear

in a distributed application when a
complex operation is performed at a
time-critical point, and can substan-
tially slow down your application’s
overall performance.

• Network resource limitations can
cause a distributed system to fail
when the size of the system is ramped
up. Scalability problems may not
occur within your test configurations,
but can appear later during deploy-
ment in the form of limited connec-
tions or insufficient bandwidth.

• Network failures can often partially

afflict a complex network. As the
application developer, it behooves
you to detect and circumvent each
point of failure.

• Race conditions can occur if parallel
working modules of a distributed
application aren’t properly synchro-
nized to prevent different modules
from producing contradictory results.
Synchronization errors are difficult to
detect because they tend to be spo-
radic and aren’t easily reproduced.

• Deadlocks can appear when the syn-
chronization protocol between mod-
ules prevents each from completing
its task. Like a race condition, a dead-
lock often appears only in a special
situation and can be difficult to
locate.

• Design errors in control flow can
occur very easily. The control flow in a
distributed application is usually
much more complex than in a single-
process application, leading to a wide
variety of design errors. Unlikely
events such as exceptions and failures
within multiple modules can be espe-
cially difficult to handle.

• Timeout failures can occur owing to
delays and bottlenecks in the network
that cause distributed parts of an
application to time out and produce a
failure. Such a failure may propagate
through the rest of the application if
you don’t handle it properly.

Over and above these various prob-
lems, in a distributed system diagnosis
is more complicated than debugging a
conventional single-process applica-
tion. To set up and step through a test
case can be very time-consuming when

using code debuggers for the distributed
modules of a system. And correlating
message entry and exit points among
numerous processes, each with its own
code debugger, can quickly become
impractical. Since you’re not testing the
application in real execution time, time-
critical failures such as bottlenecks, race
conditions, deadlocks and timeouts
can’t be detected. Conventional debug-
ging rarely detects scalability problems
either.

Monitoring Messages Between CORBA
Objects

One good and effective way of diag-
nosing distributed systems is through
monitoring communication between
the various distributed components.
The objective of this article is to demys-
tify the CORBA communication bus by
showing you how to capture the details
of messages passed between CORBA
objects. Such monitoring lets you
observe and record method invocations
and exceptions selectively, helping you
avoid or eliminate bottlenecks, race
conditions and other potential failures
that might otherwise impede the perfor-
mance of your application.

Let’s look at what goals you should
bear in mind as you monitor these mes-
sages.
• Distributed debugging: You need to

monitor them during the develop-
ment and test phases of a project.
That way, you’ll uncover problems
before an application is deployed.
When the application goes live, com-
munication details should be logged
to enable performance analysis and

139JUNE 2000

Java COM

Object
Management

Group
www.omg.org

C O R B A C O R N E R

Java COM

140 JUNE 2000

to make it possible to troubleshoot
unexpected failures quickly. You
should be able to activate monitoring
on the fly without having to stop and
restart the application.

• Application-level communication
details: You should observe request-
reply details as they occur at the
application level. For example, “The
buy method of the stock_exchange
object was called using a stock sym-
bol of SEGU and a share amount of
1000.” Monitoring at the application
level requires an understanding of all
CORBA data types and of complex
user-defined types. Details captured
about each message should include
request ID, interface name of the tar-
get object, method being invoked,
parameter values, timing data,
process IDs, host IDs and any thrown
exceptions.

• Dynamic activation: Make sure that
application objects are completely
unaware of any active monitoring.
You should be able to dynamically
turn monitoring on or off and specify
which communication details to
observe while your application is run-
ning.

• Filter criteria: Ensure that it’s easy to
filter traffic and thus monitor only
those interfaces, methods and para-
meters that you’re interested in. Make
sure too that it’s possible to stipulate
how many times a particular method
will be observed and at which com-
munication entry and exit points.

• Timing analysis: Use message time-
stamps and timing data to help iden-
tify server latency, message travel
time and client wait time – informa-
tion that’s extremely helpful for diag-
nosing and resolving timing-related
problems.

• Data recording: Record monitored
communication to enable logging
message activity or analyzing results.
It should be possible to parse and sort
the recorded data.

How CORBA Communication Works
CORBA can be conceptualized as a

communication bus for distributed

objects. In a CORBA system the “client/
server” terminology applies within the
context of a specific request. In other
words, if object A invokes a method on
object B, A is the client and B is the serv-
er; if B then calls A, the roles are
reversed.

The Object Request Broker (ORB) is
the mediator, responsible for brokering
interactions between objects. Its job is
to provide object location and access
transparency by enabling client invoca-
tions of methods on server objects (see
Figure 1). If the server interface is known
at build time, a client can connect – or
bind – to a server object statically. If
unknown, it can use dynamic binding to
ascertain a server’s interface and con-
struct a call to the corresponding object.

Exported server interfaces are speci-
fied in the CORBA standard interface
definition language (IDL). You don’t
write server implementations in IDL: an
interface description is mapped instead,
using an IDL compiler, to native lan-
guage bindings such as Java or C++. This
allows each programmer to write source
code independently in whichever lan-
guage may be the most appropriate. A
Java program, for example, can access a
server object implemented in C++ – the
Java programmer merely invokes meth-
ods on the server as though they’re local
Java method calls. Figures 2 and 3 illus-
trate, respectively, an IDL description
for a CORBA server and a Java client that
calls a corresponding object implemen-
tation.

In Figure 2 Account is an interface
that corresponds to a class implement-
ed in a server. IDL attributes define the
properties of a class (e.g., balance). The

IDL compiler maps attributes to “get”
and possibly “set” methods. Operations
define the methods to be implemented
by the server (e.g., make_deposit and
make_withdrawal). Their parameters
must be explicitly identified in the inter-
face description as in, out or inout.
Many other features are supported by
IDL, such as inheritance for specifying
derived interfaces, modules for estab-
lishing naming scopes and exceptions
that are supported by an interface or
raised by operations.

The IDL compiler generates a skele-
ton that’s linked to the server program
and provides static interfaces to call
methods of an object implementation.
The skeleton unmarshals methods and
parameters that come from a client via
the ORB. The IDL compiler also gener-
ates a client stub that’s linked to pro-
grams that will statically invoke server
methods through the associated inter-
face. The client stub maps a CORBA
server object to a native object in the
client’s language (see Figure 3). The stub
acts as a proxy for remote server objects
by marshaling methods and parameters
to be transmitted via the ORB. CORBA
also supplies the dynamic invocation
interface (DII) for client programs to
discover server interfaces and construct
method calls at runtime. The DII
requires the use of the CORBA interface
repository, which contains compiled
IDL descriptions that can be interrogat-
ed programmatically (see Figure 4).

The CORBA standard guarantees
interoperability between applications
built using different vendors’ ORBs. The
Internet InterORB Protocol (IIOP)
defines standard message formats, a
common data representation for map-
ping IDL data types to flat messages and
a format for an interoperable object ref-
erence (IOR) over TCP/IP networks. In
other words, IIOP is the CORBA wire-
level protocol.

CORBA communication typically con-
sists of a request message and a reply
message. Most ORBs implement inter-
ceptors that permit these IIOP messages
to be traced at the four points shown in
Figure 5: SendRequest, ReceiveRequest,
SendReply and ReceiveReply.

REQUEST

Client

Object Request Broker

Server Object
Implementation

FIGURE 1 A client invokes an object’s
methods through the ORB.

FIGURE 3 Excerpt from a Java client

// Java

//Deposit $100.25 into "accountRef"

try {

//...

float result = accountRef.make_deposit((float)100.25);

} catch (org.omg.CORBA.SystemException ex) {

System.out.println("EXCEPTION: " + ex);

}

FIGURE 2 Simple interface description specified in IDL

// IDL
interface Account
{

//Attributes
readonly attribute float balance;

//Operations
float make_deposit(in float amount);
float make_withdrawal(in float amount);

};

141JUNE 2000

Java COM

n-ary
www.n-ary.com

142 JUNE 2000

C O R B A C O R N E R

An Architecture for Monitoring
Communication

Now that we’ve discussed the goals of
monitoring messages between distrib-
uted components and reviewed how
CORBA communication works, let’s look
at an architecture for monitoring in a
CORBA environment.

Intercepting and interpreting IIOP
messages can be achieved using four
types of architectural components:
Probe, Profile, Collector and Observer.
Each monitored CORBA process –
whether acting as a client, server or both
– contains a Probe object that captures
messages based on the filter criteria as

specified by an active Profile. A Profile
can be created, updated or uploaded to a
Probe at any time. The intercepted data is
recorded by the Probe, read by a Collector
and transmitted to an Observer. The
Observer is the primary collection point
for aggregating data from multiple Col-
lectors, and the data it records can then
be viewed and analyzed (see Figure 6).

Given the absence of standardization
in the area of CORBA monitoring and
diagnostics, the design and implemen-
tation of a monitoring architecture will
vary depending upon who’s creating it –
the application developer, the ORB ven-
dor or (preferably) an independent tool
vendor. The issue of standardization will

be discussed later. First, let’s explore
each of our architectural components in
detail.

PROBE
Most ORBs provide interceptors that

allow the creation of a Probe object,
which captures and records IIOP mes-
sages, within each monitored CORBA
process. Only one Probe object is neces-
sary per process, regardless of the num-
ber of business objects created. The
business objects are completely
unaware of the Probe, which means the
application’s business logic doesn’t take
the Probe into acount, except for the
code that creates an instance of the
Probe object. (Such instrumentation
code would typically be placed in the
main routine after initializing the ORB –
outside the actual business objects.)

PROFILE
A Profile specifies filter criteria used

by a Probe while collecting messages. It’s
a dynamically configurable filter that
can be uploaded to a Probe residing
within a running program (see Figure 7)
and it serves three purposes:
1. It scopes the traffic being observed to

include only the interfaces, methods
and parameters of interest.

2. It indicates how many times a partic-
ular method should be observed.

3. It specifies any or all of the four possible
communication points to capture data,
i.e., SendRequest, ReceiveRequest, Send-
Reply and ReceiveReply.

A Profile might specify, for example,
“Monitor up to 20 invocations of the
method make_deposit at the Receive-
Request and SendReply points.” The
CORBA interface repository is useful for
a Profile editor or similar tool to deter-
mine details about available object inter-
faces. This allows you to create or modi-
fy a Profile, which you can then upload
to a Probe within a running process.

COLLECTOR
A collector serves as the registration

point in the monitoring architecture for

Cl
ie

nt
 A

pp
lic

at
io

n Server Application

Proxy Object
Account X

Request: make_deposit on Account X

Reply: Confirmation of make_deposit on Account X

Send
Request

1 2

4 3

Receive
Request

Receive
Reply

Send
Reply

Implementation Object
Account X

FIGURE 5 Request and reply messages can be intercepted at four points.

TIER 1 TIER 2 TIER 3

Presentation
& Interaction

Business Objects

IIOP

Monitoring
Recording

Analysis

Data

FIGURE 6 Intercepting and interpreting IIOP message traffic allows you to monitor,
record and analyze business object communication.

Profile
Interface
 Method
 Parameter
SendRequest
ReceiveRequest
SendReply
ReceiveReply
Invocations

CORBA Application Probe

FIGURE 7 Instrumented CORBA
application

//IDL
inerface Account
{
 ??Attributes
 readonly attribute flo

 //Operations
 float make_deposit{ in
 float make_withdrawal{
};

Static Client

Client Stub {

IDL Compiler

Server

Server Skeleton {

Dynamic Client

DII {

IIOP

Interface
Repository

FIGURE 4 An IDL description is mapped to a server skeleton and client stub.

Java COM

143JUNE 2000

Java COM

ADVERTISER URL PH PG

ADVERTISER INDEX
ADVERTISER URL PH PG

4TH PASS WWW.4THPASS.COM 877.484.7277 87

ACTIVATED INTELLIGENCE WWW.HEADLINEWATCH.COM 212.896.8220 127

AJILE SYSTEMS WWW.AJILE.COM 408.557.0829 134

ALLAIRE CORPORATION WWW.ALLAIRE.COM/DOWNLOAD 888.939.2545 25

AMAZON.COM WWW.AMAZON.COM 121

APPEAL VIRTUAL MACHINES WWW.JROCKIT.COM 46 8402 28 73 27

BLUESTONE SOFTWARE WWW.BLUESTONE.COM 888.BLUESTONE 4

BUZZEO WWW.BUZZEO.COM 800.804.4724 63

CAPE CLEAR WWW.CAPECLEAR.COM 353.1.618.2071 47

CAREER OPPORTUNITIES 800.846.7591 177-209

CEREBELLUM SOFTWARE WWW.CEREBELLUMSOFT.COM 888.862.9898 33

CERTICOM WWW.CERTICOM.COM 800.476.0196 111

CIMMETRY SYSTEMS, INC. WWW.CIMMETRY.COM 800.361.1904 152

CODEMARKET WWW.CODEMARKET.NET/SPECIALOFFER 914.638.2159 117

COMPUTERWORK.COM WWW.COMPUTERWORK.COM 800.691.8413 134

COMPUWARE WWW.COMPUWARE.COM/NUMEGA 800.4.NUMEGA 29

CRUEL WORLD WWW.CRUELWORLD.COM 650.847.3581 81

DEVELOPMENTOR WWW.DEVELOPMENTOR.COM 503.681.4724 152

ELIXIR TECHNOLOGY WWW.ELIXIRTECH.COM/DOWNLOAD 65.532.4300 73

ELIXIR TECHNOLOGY WWW.ELIXIRTECH.COM/ELIXIRREPORT 65.532.4300 123

ELIXIR TECHNOLOGY WWW.ELIXIRTECH.COM/DOWNLOAD 65.532.4300 129

EMBARCADERO TECHNOLOGIES WWW.EMBARCADERO.COM/DESIGN 415.834.3131 151

EMBARCADERO TECHNOLOGIES WWW.EMBARCADERO.COM/ADMINISTER 415.834.3131 153

EMBARCADERO TECHNOLOGIES WWW.EMBARCADERO.COM/DEVELOP 415.834.3131 155

EVERGREEN WWW.EVERGREEN.COM/JDJ.HTML 408.926.4500 91

FIORANO WWW.FIORANO.COM 408.354.3210 109

FLASHLINE WWW.FLASHLINE.COM 800.259.1961 67

GEMSTONE WWW.GEMSTONE.COM/WELCOME 503.533.3000 31

GENERIC LOGIC, INC WWW.GENLOGIC.COM 413.253.7491 94

HIT SOFTWARE WWW.HIT.COM 408.345.4001 49

HOTDISPATCH.COM WWW.HOTDISPATCH.COM 650.234.9752 57

IAM CONSULTING WWW.IAMX.COM 212.580.2700 83

INETSOFT TECHNOLOGY CORP WWW.INETSOFTCORP.COM 732.235.0137 45

INETSOFT TECHNOLOGY CORP WWW.INETSOFTCORP.COM 732.235.0137 56

INFORMATION ARCHITECTS WWW.IA.COM 704.365.2324 37

INFORMATION ARCHITECTS WWW.IA.COM 704.365.2324 39

INFORMATION ARCHITECTS WWW.IA.COM 704.365.2324 41

INFORMATION ARCHITECTS WWW.IA.COM 704.365.2324 43

INFORMIX/ CLOUDSCAPE WWW.CLOUDSCAPE.COM 510.239.1900 18-19

INSIGNIA SOLUTIONS WWW.INSIGNIA.COM/JEODE 800.848.7677 15

INTUITIVE SYSTEMS, INC WWW.OPTIMIZEIT.COM 408.245.8540 59

IONA TECHNOLOGIES WWW.IONA.COM/JPAS.HTM 781.902.8281 115

JAVA DEVELOPER’S JOURNAL WWW.JAVADEVELOPERSJOURNAL.COM 914.735.0300 38,145

JAVACON2000 WWW.JAVACON2000.COM 146-147

JAVACON2000 WWW.JAVACON2000.COM 149

JAVAONE CONFERENCE HTTP://JAVA.SUN.COM/JAVAONE 888.886.8769 131

JDJ STORE.COM WWW.JDJSTORE.COM 888.303.JAVA 156-157

KL GROUP INC WWW.KLGROUP.COM/TICKET 888.361.3264 21

KL GROUP INC WWW.KLGROUP.COM/GREAT 888.361.3264 101

KL GROUP INC WWW.KLGROUP.COM/COLLECT 888.361.3264 212

METAMATA INC WWW.METAMATA.COM 510.796.0915 89

MICROSOFT MSDN.MICROSOFT.COM/TRAINING 11

THE MIDDLEWARE COMPANY WWW.MIDDLEWARE-COMPANY.COM/INFO 127

MODIS SOLUTIONS WWW.IDEA.COM 703.821.8809 69

N-ARY WWW.N-ARY.NET 877.849.6833 135

NO MAGIC WWW.MAGICDRAW.COM 303.914.8074 5

NORTHWOODS SOFTWARE CORP. WWW.NWOODS.COM 800.226.4662 159

OBJECT MANAGEMENT GROUP WWW.OMG.ORG 781.444.0404 139

OOPSLA 2000 WWW.OOPSLA.ACM.ORG 503.252.5709 103

PERSISTENCE WWW.PERSISTENCE.COM 650.372.3600 71

POINTBASE WWW.POINTBASE.COM/JDJ 877.238.8798 93

PROGRESS SOFTWARE WWW.SONICMQ.COM/AD1.HTM 800.989.3773 2

PROSYST WWW.PROSYST.COM 678.366.5075 95

PROTOVIEW WWW.PROTOVIEW.COM 650.847.3588 3

QUICKSTREAM SOFWARE WWW.QUICKSTREAM.COM 888.769.9898 154

SEGUE SOFTWARE WWW.SEGUE.COM 800.287.1329 55

SIC CORPORATION WWW.SIC21.COM 822.227.398801 97

SILVERSTREAM WWW.SILVERSTREAM.COM 978.262.3000 211

SIMPLEX KNOWLEDGE COMPANY WWW.SKC.COM 914.620.3700 133

SLANGSOFT WWW.SLANGSOFT.COM 972.2.648.2424 136-137

SOFTWARE AG WWW.SOFTWAREAG.COM/BOLERO 925.472.4900 75

SOFTWIRED WWW.SOFTWIRED-INC.COM/IBUS 411.445.2370 99

STARBASE WWW.STARBASE.COM 888.STAR.700 105

STERLING SOFTWARE WWW.COOLJOECHALLENGE.COM 972.801.6000 106-107

SYBASE WWW.SYBASE.COM/PRODUCTS/EASERVER 800.8.SYBASE 51

SYNTION AG WWW.SYNTION.COM 49.89.52.3045.0 145

SYS-CON RADIO WWW.SYS-CON.COM 888.886.8769 124

THINWEB TECHNOLOGIES WWW.THINWEB.COM 877.THINWEB 23

TIDESTONE TECHNOLOGIES WWW.TIDESTONE.COM 800.884.8665 65

TOGETHERSOFT CORPORATION WWW.TOGETHERSOFT.COM 919.833.5550 6

UNIFY CORPORATION WWW.EWAVECOMMERCE.COM 800.GOUNIFY 85

UNIFY CORPORATION WWW.SERVLETEXEC.COM 678 366.3211 77

VERGE TECHNOLOGIES GROUP INC WWW.EJIP.COM 119

VISICOMP WWW.VISICOMP.COM/JDJ6 831.335.1820 35

VISUALIZE INC. WWW.VISUALIZEINC.COM 602.861.0999 159

VSI WWW.BREEZEXML.COM 800.556.4874 79

WEBGAIN WWW.WEBGAIN.COM 888.822.3409 9

WEBGAIN WWW.WEBGAIN.COM 888.822.3409 53

WEBGAIN WWW.WEBGAIN.COM 888.822.3409 61

WEBVISION WWW.WEBVISION.COM 800.531.5057 13

WINTERTREE SOFTWARE WWW.WINTERTREE-SOFTWARE.COM 800.340.8803 158

XML DEVCON 2000 WWW.XMLDEVCON2000.COM 161-176

YOUCENTRIC WWW.YOUCENTRIC.COM/NOBRAINER 888.462.6703 113

ZUCOTTO WWW.ZUCOTTO.COM 613.789.0090 125

C O R B A C O R N E R

AUTHOR BIO
Todd Scallan is the vice
president in charge of

Segue Software's
California Development

Laboratory. He holds a BS
in electrical engineering
from Lehigh University

and an MS in computer
engineering from

Syracuse University.

tscallan@segue.com

Java COM

144 JUNE 2000

the local application programs. A Probe
writes intercepted IIOP messages for sub-
sequent retrieval by the Collector using
the fastest possible mechanism and for-
mat so that the Probe doesn’t become a
bottleneck by blocking the message traf-
fic. As the data is written, the Collector
reads the messages and transmits them to
a primary collection point (see Figure 8).
A Collector may also transmit additional
relevant data about monitored processes
to the primary collection point.

OBSERVER
The Observer is the primary registra-

tion and collection point for all Collec-

tors across the distributed environment.
As data is transmitted to the Observer,
it’s written to a global database viewable
in real time to permit the analysis of sys-
tem performance (see Figure 9).

The information about each mes-
sage captured includes:
• Sequence number of the request
• Name of the interface containing the

operation or attribute
• Name of the operation or attribute in

the request
• Amount of time the server took to

process the request
• Amount of time spent by the request on

the wire

• Total time between the request being
sent and reply being received (server
time + travel time)

• Parameters in the request at each of
the communication points

• System process IDs and names of the
hosts for the server and the caller

• Timestamps at each of the communi-
cation points

• Details about any thrown exception
including the communication point
where the exception was raised

Figure 10 illustrates a simple captured
message.

Summary:What You Can Do
Gaining insight into distributed sys-

tem behavior can be complicated, but by
performing application-level monitor-
ing during a project’s development and
test phases you can uncover problems
prior to deployment and thereby ensure
that your application is reliable. Then,
when it subsequently goes live, you can
capture communication details to allow
performance analysis and quick trou-
bleshooting of unexpected failures.
Monitoring and diagnostics in your
CORBA system can be achieved using a
commercially available tool such as
Segue Software’s SilkObserver or by
building custom instrumentation into
your application. Either way, differing
techniques may be applied depending
on which ORBs you’re using and what
the specific monitoring objectives are for
your system.

The OMG’s Test Special Interest
Group is in the process of standardizing
distributed instrumentation and control
for CORBA systems. (A Request for Pro-
posals is being drafted as of this writing
and will be issued this summer.) The
group is defining a common set of instru-
mentation capabilities for use in the
management, debugging and profiling of
multivendor CORBA-based systems.
These capabilities will likely rely on the
OMG’s anticipated standard for portable
interceptors. The Test SIG’s efforts should
yield an interface specification for con-
trolling object execution, returning state
information and providing other useful
functions that today are performed
inconsistently – if at all – across CORBA
implementations. When complete, the
OMG’s efforts in this area should result in
consistent mechanisms for distributed
monitoring and diagnostics while using
the ORB of any vendor. You can check out
the progress of the Test SIG on the OMG
Web site (www.omg.org) or by sending an
e-mail to info@omg.org.

Observer

Collector

Host B

Collector

Host A

Host C

Recorded
Data

Monitor

FIGURE 9 Recording and monitoring

FIGURE 10 Details of a captured message

Recorded Messages

Primary
Collection

Point

Collector

HOST

FIGURE 8 Collecting intercepted data

PROCESS INFORMATION TIMING INFORMATION
Interface: Account Total Time: 32 ms
Method: make_deposit Travel Time: 22 ms

Client Server Server Time: 10 ms
Process: BankClient Process: BankServer
Host: cypress.segue.com Host: redwood.segue.com
Profile: client-filter Profile: server-filter
Process ID: 171235899 Process ID: 171063782

SENDREQUEST _ > > _ RECEIVEREQUEST
Time Stamp: Fri Mar 24 07:52:57:995 PST 2000 Time Stamp: Fri Mar 24 07:52:58:015 PST 2000
Parameters: in float amount = 100.25 Parameters: in float amount = 100.25
Return: Void Return: Void

RECEIVEREPLY _ < < _ SENDREPLY
Time Stamp: Fri Mar 24 07:52:58:027 PST 2000 Time Stamp: Fri Mar 24 07:52:58:025 PST 2000
Parameters: Parameters:
Return: (float) 879.67 Return: (float) 879.67

145JUNE 2000

Java COM

Syntion AG
www.syntion.com

Java Developer’s
Journal

www.javadevelopersjournal.com

Java COM

146 JUNE 2000

JavaCon 2000
www.javacon2000.com

147JUNE 2000

Java COM

JavaCon 2000
www.javacon2000.com

BSF provides a universal
scripting platform for Java

J D J F E A T U R E

WRITTEN BY RICK HIGHTOWER

Part 4 of a series discussing the many languages that compile and/or run on the Java platform

Do you remember the operating system religious wars? Mac OS versus Windows, Windows NT versus UNIX,
OS/2 versus Windows NT. Or how about the text editor wars – VI versus Emacs? It may seem silly for program-
mers to become involved so passionately with the technology they work with, but if you spend more time with
your VI text editor than with your family, I guess you do get kind of attached. I’m certain, for example, that we all
have our favorite programming language…

Java COM

148 JUNE 2000

149JUNE 2000

Java COM

R
ecently, for example, I was
explaining to a colleague why
I like to prototype things in
JPython. He stared at me
blankly and asked what at first
seemed an innocent enough
question: “Why?”

I spent the next five minutes explaining – I
didn’t even take a breath. To which he again
responded “why?” before going on to expound
on how Java was the perfect language and how
you don’t need another one. At this point I
found it better not to continue the conversa-
tion. I try to avoid religious attachment to tech-
nology. (See the March issue of JDJ [Vol. 5, issue
3] for more about JPython.)

I’ve had similar experiences when talking to
VB, Perl, Delphi, C++ and REXX programmers.
Perl programmers seem particularly attached
to their language. Developers have favorite lan-
guages just like developers have their favorite
editor. (Mine is Emacs.)

Java is one of my favorite programming lan-
guages. However, it’s more than just a language,
it’s a platform, and Java the platform runs
many, many programming languages. (See the
first article in this series to learn more about
programming languages that run in the Java
Virtual Machine [“Programming Languages for
the JVM,” Vol. 5, issue 2].)

Now let’s say that you wanted to make
available a set of services from a Java-based
application via a scripting language, as
LotusScript does for Notes or VBA (Visual
Basic for Applications) does for Excel. Which
scripting language do you use? It’s more or
less impossible to pick one without leaving
someone bent out of shape. Remember,
everyone has their favorite. You want your
application services to be inclusive, not exclu-
sive.

What if you could support all of the major
scripting languages with the same or less
effort than it took you to support one? Essen-
tially, with Bean Scripting Framework (BSF)
from IBM, you can support Perl, Python,
NetRexx, JavaScript and even VBScript. Cool
beans!

What’s more, BSF is going to add standard
ways to debug scripts, a major flaw in some
scripting languages. (I know, I know: real pro-
grammers don’t use visual debuggers. But
admit it, you do sometimes – and so do I, but
don’t tell anyone.) BSF brings standard support
for many programming languages to the Java
platform.

Why Scripting Languages?
The BSF white paper states the following:

“As component-oriented software develop-
ment becomes more and more commonplace,
scripting is fast becoming a key development
methodology.…Scripting is a natural counter-
part to component oriented development –
components can be written in standard object-
oriented languages and then ‘glued together’ to

form applications using scripting lan-
guages.…[Scripting languages] are a natural fit
in the component oriented development
world.” (Quote taken from Bean Scripting
Framework: A Scripting Architecture for the
Java Platform written by Rick Rineholt, Sam
Ruby, Matthew J. Duftler and Sanjiva Weer-
awarana.)

I believe the above echoes my same senti-
ments from the first article in this series.
Scripting languages and components go
together like a horse and carriage: having a
standard way for scripts to talk to Java compo-
nents opens up a lot of possibilities. BSF
endeavors to provide a standard for scripts to
communicate with Java components. (Please
refer to the first article for more information on
components and scripting languages.)

What Is BSF?
An application that uses BSF can use script-

ing – and become scriptable – using any BSF-
supported language. Thus, when BSF adds
support for additional languages, your applica-
tion will automatically support the new lan-
guages.

The official Java platform from Sun doesn’t
have a standard scripting architecture, but IBM
is submitting BSF to JavaSoft as a Java Specifi-
cation Request, so BSF may become the basis
of the Java platform standard extension for
scripting. Even if it doesn’t, BSF is likely to be
the de facto standard for scripting integration
for the Java platform.

Why BSF?
The advantages of having a standard script-

ing architecture like BSF is as follows:
• It replaces the ad hoc approach to script

integration.
• It enables applications to support a lot of

scripting languages.
• Its scripts enable “nonprogrammers” to

extend your application.
• Services like debugging can be shared.

What Languages Does BSF Support?
Currently, the BSF supports the following

pure Java platform languages:
• Netscape’s Rhino (JavaScript)
• Jacl (TCL)
• JPython (Python)
• NetRexx (REXX variant)
• Bean Markup Language (developed by IBM)
• LotusXSL
• Pnuts

The scripting language doesn’t have to be
implemented in Java to be supported by BSF.
For example, IBM adds support for Perl and
VBScript. Essentially, all active scripting lan-
guages including VBScript and JScript are sup-
ported via BSF’s support for Microsoft Active
Scripting Framework (MASF).

Java-
Con
2000
www.java-

con2000.com

Java COM

150 JUNE 2000

BSF is the Java version of MASF, which is weird because some lan-
guages that are supported by MASF are also supported by BSF. Thus you
can mix classic Python with JPython. This is good for legacy integration.
In addition, every language that gets added to MASF automatically gets
added to BSF. Pretty tricky, huh?

BSF is to MASF as JDBC is to ODBC. Just as you can have pure data-
base drivers in JDBC or use native ODBC drivers, you can have pure Java
scripting languages or use native scripting languages in BSF.

Think of all the people in the world who have done VBScript (or VBA).
Now you can allow them to participate in your development efforts. Not
only that, but you have another integration point with COM via MASF.
With MASF, you can instantiate COM objects. (Don’t worry, you 100%
Pure zealots, you can still use BSF scripting in a Pure environment as
well.)

Distribution
BSF is currently freely available – source and all. BSF will be devel-

oped under an open-source model in the very near future. If you have a
favorite scripting language that’s not supported by BSF, you should con-
sider defining your own BSFEngine, which can be plugged into the
framework.

Architecture
The BSF architecture consists primarily of two components: BSF-

Manager and BSFEngine. The BSFManager is a common interface to
scripting languages: you use it to access scripts from your applications.
The BSFEngine interface provides a common interface for BSF to inter-
act with a scripting language. The JDBC is to a JDBC Driver as BSF is to a
BSFEngine. Essentially, a BSFEngine is a scripting language driver.

Getting Started
I downloaded the latest version of BSF and tried it out with one of my

favorite scripting lanaguges: JPython.
The first step on every journey like this is usually a download or two

and this adventure is no different. I went to IBM’s alphaWorks Web site,
looked up BSF and downloaded the bsf21.zip before extracting it to
C:\BSF-2.1.

The zip file contains all the files you need to get started: API docu-
ments, a getting started guide, source code and library files (JAR files).
The ReadMe file has most of the information you need to get started. The
getting started guide introduces you to most of the concepts behind BSF
with some code example snippets.

Even with all of the above, setting up BSF is not for the averagely
motivated person. The BSF guide is good but it needs a little more meat
– it’s not a step-by-step tutorial. If you like to tinker, then BSF is for you,
but if you rarely wander from the confines of your favorite Java IDE, BSF
may not be for you at this stage.

Eventually I got some sample code that I’d written to work. I had a
problem and needed to look at the BSF source to figure out what was
happening. It was a little tougher than I thought it would be (see the
sidebar for details), but it wasn’t impossible.

One of the keys to getting started smoothly is to make sure the JAR
files for BSF and those for your scripting language are on the CLASS-

PATH. Two JAR files ship with BSF that you need on your classpath:
bsf.jar and bsfengines.jar. The bsf.jar has the core BSF files. The
bsfengines.jar has the language drivers, i.e., the language engines. You
also need the JAR files for your language on the classpath, e.g., if you are
using JPython you need JPython.jar on your classpath. (JPython.jar
ships with the JPython distribution.) For NetRexx you need
NetRexxC.jar, NetRexxR.jar and tools.jar on your classpath; for TCL
(JACL) you need JACL.jar; and for JavaScript you need js.jar and
jstools.jar.

The example I’m going to highlight in this article will focus on inte-
grating JPython. However, with slight modification you can incorporate
TCL, JavaScript, NetRexx and so on. I’ll leave the modification up to you.

For the code example, we’ll map in an instance of a class to the BSF-
Manager, load a script and then execute it. The script will have code that
interacts with the class instance we mapped in the BSFManager. The
class we’ll use should be familiar to you if you’ve been following this
series. Basically, it’s a variation of the Statistics class from the last two
articles.

The Stats class (see Listing 1) is a simple class that figures out the
mean, mode and median for a given set of numbers. The script that we’re
going to use to manipulate this instance of Stats is very short (see Listing
2) – it prints out the mean, mode and median price of a list of houses.

print "The mode of the houses is %2.2f" % houses.mode

print "The mean of the houses is %2.2f" % houses.mean

print "The median of the houses is %2.2f" % houses.median

The houses variable is an instance of the Stats class that gets mapped
into the BSFManager.

The steps to use a scripting language in BSF are as follows:
1. Register the language with the BSF manager.
2. Load the scripting engine.
3. Map in your application objects that you want the script to have

access to.
4. Load the script and execute it.

In addition to loading and executing scripts, you can execute arbi-
trary expression of your scripting language. Listing 3 shows the code that
does all of the above steps as well as executes a JPython expression.

The first thing that Listing 3 does is to register JPython with the BSF
manager:

BSFManager manager = new BSFManager ();

//Register JPython into the scripting manager.

String[] extensions = {"py"};

manager.registerScriptingEngine ("jpython",

"com.ibm.bsf.engines.jpython.JPythonEngine",

extensions);

The manager has a method called registerScriptingEngine that takes
three arguments: the name of the scripting language; the fully qualified
class name of the BSF engine corresponding to the scripting language;
and an array of string that corresponds to all the possible file extensions
for the scripting language.

Remember, the BSF ships with several engines for various languages,
so you can easily change the above to work with JavaScript or NetRexx or
whatever. Once you’ve registered the scripting language, you can load its
engine and start working with scripts. To load the engine, call the man-
ager’s loadScriptingEngine method:

//Load JPython engine

BSFEngine jpythonEngine = manager.loadScriptingEngine ("jpython");

After the scripting engine is loaded, you can start evaluating expres-
sions and executing scripts. A scripting language expression is evaluated
by calling the eval method on the manager.

HAVING THE SOURCE IS KING

The cool thing about having the source is that you can peek at the man behind
the curtain and see what’s really going on. The problem was just a configuration issue;
however, the BSF code caught a very meaningful exception and then threw a very
vague exception. Once I saw what exception it was catching and then throwing (by
looking at the source code for BSF), I could figure out what was really happening: I
had misspelled one of the JAR files and consequently the BSFManager couldn’t find
the BSFEngine for JPython.

151JUNE 2000

Java COM

Embar
cadero

p/u
www.

embarcadero.

com

Interview...with

SAM RUBY &
SANJIVA WEERAWARANA

Two key members of the BSF development team,
Sam Ruby and Sanjiva Weerawarana, helped me con-
siderably in developing and researching this article. I
had a chance to open up a dialog with them at the
time about the future of BSF and as you’ll see from
the following account of our conversation, they were
extremely helpful.

RICK HIGHTOWER: Is the Apache Tomcat integra-
tion committed yet? [This provides the ability for
JSP in Tomcat to work with other scripting lan-
guages like JPython, TCL, NetRexx, JavaScript,
Pnuts and so on.] If not, what’s the ETA?
Sam Ruby: Unfortunately, no. Since it extends the spec
and Tomcat is meant to be a reference implementation, I
decided to make it available first as a JSP taglib. The
Jakarta Project management committee decided to make
a separate jakarta-taglib tree, so I opted to wait for that.
And now there have been delays in making that project
available. Sigh. I expect this to have been cleared up by
April. I did integrate it with the build tool used by most
Java Apache projects (ANT). I expect by May to have
moved on to the XML-Apache projects – in particular, I
plan to integrate it [BSF] with the XSP component of XML-
cocoon. XSP is an XML-centric implementation roughly
analogous to JSP or ASP. Fortunately, it doesn’t have a
standards process to work through! I don’t know how to
adequately express in a sound bite how standards are
simultaneously the most important yet frustrating things
to deal with as a developer.

RH: How soon will you go open source with BSF?
The last I heard was that you have legal, manage-
ment and executive approval and that you had
only one checkpoint left.
SR: One last issue to resolve and everything is a go (one
lawyer decided to ask another lawyer to check into a
patent issue). Should be a matter of days.

RH: What’s the current progress regarding adding
debugging support?
SR: This is only just now getting staffed.

RH: What is the current progress of creating com-
ponents (JavaBeans) with any BSF scripting lan-
guage?
Sanjiva Weerawarana: We’re pretty much done with it
and expect to release it to alphaWorks in the next two
weeks. There are a few constraints of the current imple-
mentation but the basic idea is proven with what we’ve
done.

RH: What is the total number of languages sup-
ported?
SW: All MS ActiveScript languages (including VBScript

and JScript), BML, JACL, JavaScript (Rhino), JPython,
NetRexx, TCL and XSLT. Pnuts support for BSF is available
with that language. Support for LotusScript and Perl are
under active development. You count them. [13+]

RH: What kind of resources do you have dedicated
to BSF?
SW: None of your business! <grin> Seriously, I doubt
that the number has ever been much more than four
inside IBM. Once it’s open source, I expect the number to
grow significantly.

RH: Are there any other future directions that are
not covered in the white paper that you sent?
SW: The biggest one I have in mind is that the BSF con-
cept could be implemented for C as well. Currently Win32
has a scripting architecture – guys who develop in UNIX-
land, however, don’t have anything similar. It’s quite
doable to take BSF and do a BSF-for-C type of thing
where the infrastructure assumes a C runtime rather than
a Java runtime. The thing that you really need is some-
thing that pretends to [be] the equivalent of reflection;
this isn’t that hard. I think this could be a very attractive
piece of software! We also plan on working on the compi-
lation side of BSF quite a lot. One of our guys has devel-
oped a killer way to generate code and we’re merging it
with some other stuff and hope to dramatically improve
the flexibility of the “compileScript” method of BSF. Yes,
the description in this para[graph] is intentionally vague!! I
think the issues with debugging and better error handling
were listed in the paper I sent you.

RH: Any updates?
SW: Hmm. I think the user’s guide with the latest version
on alphaWorks is pretty up to date. We haven’t been
working on BSF much because we’ve been waiting for the
open-source clearance to go [through].

RH: Where can I find more information about
BSF?
SR: The primary URL is www.alphaworks.ibm.com/
aw.nsf/techmain/bsf.

RH: Can you provide a list of known products that
are using BSF? (I heard NetBeans was going to
add support for BSF to their IDE.)
SR: WebSphere and ANT are the ones that I’ve been
involved with, as well as several unannounced IBM prod-
ucts.
SW: Please add Apache Xalan to this list – it uses BSF for
implementing the XSLT extensions.

RH: What is the status of submitting BSF to Java-
Soft as a Java Specification Request as an exten-
sion for scripting?
SR: I’ve seen the draft submissions, so I know this is in
progress. Sanjiva will have the up-to-the-minute status on
this.
SW: The status on this is that I’ve finished filling in the
JCP template as well as our internal stuff and it’s with the
IBM approval team awaiting evaluation. Those guys meet
like once a month or so…so it’ll get taken care of at the
next meeting. I expect easy passing because we had pre-
liminary approval from before.

//Execute an expression.

Object result = manager.eval ("jpython",

"testString", 0, 0, "2+32");

System.out.println("eval="+result);

The eval method takes five arguments as
follows: the name of the scripting language, the
name of the file name associated with the
expression, the row of the expression, the col-
umn of the expression, and – last – the expres-
sion. The above expression is “2+32”. When the
above code runs, it prints out 34.

Of course, in addition to evaluating expres-
sions, you can execute scripts. Before evaluat-
ing scripts you can map objects (or an entire
object model) into the BSF manager. All objects
that are mapped in the BSF manager are avail-
able to the scripts.

The following code instantiates an instance
of Stats, and then maps that instance into the
BSF manager:

//Map some objects that the script will

use.

double[] houses=new double [] {100.0e3,

130.0e3, 140e3, 150e3};

Stats stats = new Stats(houses);

manager.declareBean("houses", stats,

Stats.class);

One way to map objects into the BSF man-
ager is to call the declareBean method. The
declareBean method takes three arguments:

the script variable name of the bean (object),
the instance and the class of the instance.

After you’ve mapped in your application’s
scriptable objects into the manager, you can
load and run a script as follows:

//Load the script and execute it.

String fileName = "TestStat2.py";

String language = manager.getLangFromFile-

name(fileName);

String script = IOUtils.getStringFromRead-

er(new FileReader(fileName));

manager.exec(language, fileName, 0, 0,

script);

The manager’s exec takes the same argu-
ments as the eval method, the only difference
being that the exec method doesn’t return a
value, i.e., it returns void. Notice that the
scripting language can be decided based on
the filename of the script by using the manag-
er’s getLangFromFilename method.

I have showed how to register a language,
map application scriptable objects and execute
a script. You can easily change the above to
work with JavaScript, NetRexx and so on.

Parting Shots
The above example just scratches the sur-

face of what BSF currently supports and what it
will support in the future. Today IBM uses BSF
with WebSphere to provide JSP development

Java COM

152 JUNE 2000

Cimmetry
Systems,

Inc.
www.cimmetry.com

Develope-
mentor

www.developmentor.com

If you need to

integrate a scripting

language in your

product, you should

use BSF instead of

picking a single

scripting language

‘‘

’’

153JUNE 2000

Java COM

Embar
cadero

p/u
www.

embarcadero.

com

that can be done in other languages like
Python, TCL and JavaScript. In the near future
it will be used with the Apache Tomcat servlet
engine to support JSP for other languages, too.
If you need to integrate a scripting language in
your product, you should use BSF instead of
picking a single scripting language.

I hope to see BSF used in a lot of develop-
ment tools like IDE, editors and modeling tools
so that the developers can easily customize
their environment.

Java has wonderful features that make cre-
ating scripting languages easy. The class reflec-
tion and bean introspection APIs are a great
basis for integrating scripting languages. Once
the scripting language has metadata about a
Java’s class properties, events and methods, it
can use this data to change properties, handle
events and invoke methods. BSF complements
this feature by providing you with a common
way to map Java objects to scripting languages
and a common interface for integrating your
application with a multitude of scripting lan-
guages.

Components (JavaBeans) and distributed
components (e.g., CORBA, EJB and RMI) have a
symbiotic relationship with high-level lan-
guages. For example, Visual Basic did well
because of VBX, OCX and ActiveX components
and COM/ActiveX/DCOM did well because of
tools like Visual Basic, PowerBuilder and Delphi.
On the Java platform we have the component
models, but we need the glue, i.e., tools for the
high-level languages – debuggers, IDEs and so
on. BSF provides a common way to “glue” com-
ponents into applications using a multitude of
scripting languages. BSF does for JavaBeans
what MASF does for ActiveX controls.

AUTHOR BIO
Rick Hightower currently works at Buzzeo Corporation
(www.buzzeo.com), the maker of ZEOLogix, an EJB application server,
rules engine and workflow. In addition to being a principal software
engineer working on an EJB container implementation and distributed
event management, he is author of a book, Programming the Java
APIs with JPython, to be published by Addison Wesley.

package stat;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Collections;
import java.util.HashMap;

public class Stats {

public ArrayList nums;

public Stats(ArrayList someNums){
nums = new ArrayList(someNums);

}

public Stats(double[] someNums){
nums = new ArrayList(someNums.length);

for (int index=0; index < someNums.length; index++){
nums.add(new Double(someNums[index]));

}
}

public double getMean (){
return this.getMean(true);

}

public double getMean (boolean sample){
// Define mean that finds two types of mean, namely:
// population mean and sample mean
double sum=0.0;
double average=0.0;
Iterator iterator = nums.iterator();

while(iterator.hasNext())
sum = sum + ((Double)iterator.next()).doubleValue();

// Check to see if this is a sample mean
if(sample)
average = sum / nums.size()-1;

else
average = sum / nums.size();

return average;
}

Listing 1

rick_m_hightower@hotmail.com

public ArrayList getRange (){
// Find the range. Returns a tuple with the minimum,
// maximum, and range value

double min, max;
ArrayList ranges;

min = ((Double)Collections.min(nums)).doubleValue();
max = ((Double)Collections.max(nums)).doubleValue();

ranges = new ArrayList();
ranges.add(new Double (min));
ranges.add(new Double (max));
ranges.add(new Double (max-min));

return ranges;
}

public double getMedian (){
// Find the Median number

// create a duplicate since we are going to modify the
// sequence

ArrayList seq = new ArrayList(nums);

// sort the list of numbers
Collections.sort(seq);

double median = 0.0; // to hold the median value

int length = seq.size(); // to hold the length of the
// sequence

int index=0;

// Check to see if the length is an even number
if ((length % 2) == 0){

// since it is an even number

// add the two middle number together
index = length / 2;
double m1 = ((Double)seq.get(index-1)).doubleValue();
double m2 = ((Double)seq.get(index)).doubleValue();
median = (m1 + m2) /2.0;

}
else{

// since it is an odd number
// just grab the middle number

index = (length / 2);
median = ((Double)seq.get(index)).doubleValue();

}
return median;

}

private int countMode(Object object, ArrayList list){
int index = 0;
int count = 0;
do {
index = Collections.binarySearch(list, object);
if(index >=0)list.remove(index);
count++;

}
while (index >=0);
return count;

}

public double getMode (){
// Find the number that repeats the most.

// make a duplicate copy of the nums argument
ArrayList duplicate = new ArrayList(nums);

Collections.sort(duplicate);
double highest_count = -100;
double mode = -100;

Java COM

154 JUNE 2000

QuickStream
Software

www.quickstream.com

155JUNE 2000

Java COM

Embar
cadero

p/u
www.

embarcadero.

com

Iterator iterator = nums.iterator();
// iterate through nums removing each item out of the duplicate
// calculate the highest_count and the mode

while(iterator.hasNext()){
double count = 0;
Object item = iterator.next();

// Count the number of times the item occurs in the list
// If Count is 0 go to the next iteration

count = countMode(item, duplicate);
if (count == 0) continue;

// determine the highest count. The highest counted item is the mode.
if (count > highest_count){
highest_count = count;
mode = ((Double)item).doubleValue();

}
}

return mode;
}

}

print "The mode of the houses is %2.2f" % houses.mode
print "The mean of the houses is %2.2f" % houses.mean
print "The median of the houses is %2.2f" % houses.median

import com.ibm.cs.util.IOUtils;
import com.ibm.bsf.BSFManager;
import com.ibm.bsf.BSFEngine;
import java.io.FileReader;
import stat.Stats;

class Test {
public static void main (String [] args){
BSFManager manager = new BSFManager ();

//Register JPython into the scripting manager.
String[] extensions = {"py"};
manager.registerScriptingEngine ("jpython",

"com.ibm.bsf.engines.jpython.JPythonEngine",
extensions);

try{
//Load JPython engine

BSFEngine jpythonEngine = manager.loadScriptingEngine ("jpython");

//Execute an expression.
Object result = manager.eval ("jpython", "testString", 0, 0, "2+32");
System.out.println("eval="+result);

//Map some objects that the script will use.
double[] houses=new double [] {100.0e3, 130.0e3, 140e3, 150e3};
Stats stats = new Stats(houses);
manager.declareBean("houses", stats, Stats.class);

//Load the script and execute it.
String fileName = "TestStat2.py";
String language = manager.getLangFromFilename(fileName);
String script = IOUtils.getStringFromReader(new FileReader(fileName));
manager.exec(language, fileName, 0, 0, script);

}//try
catch (Exception e){
System.out.println(""+e);

}//catch

}//main
}//Test

Listing 3

Listing 2

Java COM

156 JUNE 2000

JD Store.com
www.jdjstore.com

157JUNE 2000

Java COM

JD Store.com
www.jdjstore.com

Pervasive, IBM and Caldera
Systems Deliver Linux-
Based E-Business Bundle
(Hong Kong) – Pervasive Software,
Inc., is teaming up with IBM and
Caldera Systems to deliver a
Linux-based e-business bundle
for the Korean Web application
developer market, combining Per-
vasive and Caldera software prod-
ucts on IBM servers.

Available in Korea through dis-
tribution from Daesang Informa-
tion, the bundle is designed for
Web application developers in the
Korean market delivering Linux-
based e-business solutions. The

IBM server-
based bundle

combines the Web application-
enabling features of Tango 2000
and Caldera’s OpenLinux 2.3 into a
complete hardware/software Web
application development
platform.
www.pervasive.com

Introducing FioranoMQ
(Los Gatos, CA) – Fiorano, Inc., a
leading provider of standards-
based, Java technology messaging
solutions, has released the Fiora-
noMQ Bridge for MSMQ and IBM
MQSeries, enabling Java applica-
tions to leverage an existing
enterprise messaging infrastruc-
ture to send and receive messages
using the JMS API. A free develop-
ment license for FioranoMQ
including the bridging technology
is available for download from the
Fiorano Web site.
www.fiorano.com.

Intercontinental Exchange
Selects Gemstone’s
E-Business Software
(Beaverton, OR) – GemStone Sys-
tems, Inc., has announced that its
e-business application server soft-
ware was chosen as the founda-

tion for
Interconti-
nentalEx-
change’s B2B
Internet
trading plat-

form for globally traded over-the-
counter commodities.

GemStone’s e-business solu-
tion – with Extreme Clustering
technology – will enable Inter-
continentalExchange to provide
its customers with a real-time
trading exchange for increased
market transparency, liquidity
and secure transactions. Multiple
traders will more efficiently
access, share and retrieve huge
amounts of data and information
simultaneously.
www.gemstone.com

CodeMarket Stocking
Its Shelves
(New City, NY) – CodeMarket is
accepting submissions from indi-
vidual developers for their online
Java object marketplace. With the

aim of
becom-
ing the
premier

destination to buy and sell unit-
tested Java objects, CodeMarket
uses obfuscation technology to
offer objects and components on

a free trial basis to buyers. Sellers
receive free listings and testing
and get to work with CodeMarket
technicians to improve their code
documentation, pricing and
licensing. For details of a current
promotion including 70% com-
missions to sell-
ers and bonuses
for referrals, go to www.codemar-
ket.net/
specialoffer.

Metrowerks Releases
CodeWarrior with
PersonalJava Support
(Austin, TX) – Metrowerks has
announced the availability of
CodeWarrior, PersonalJava Plat-
form Edition, Version 1.0, which
allows developers to create appli-
cations and content for high-end
networked consumer devices such
as mobile handheld computers,
set-top boxes,
Internet
screen phones
and Internet appliances that sup-
port the PersonalJava platform
and API.

Using the award-winning
CodeWarrior IDE, developers will
be able to add valuable content to
any networked consumer device
that executes PersonalJava virtual
machine and class libraries from a
LAN or wireless network.
www.metrowerks.com

Buzzeo Appoints JDJ
Writer to Manager of
ZeoLogix
(Phoenix, AZ) – Buzzeo recently
announced the appointment of
Rick Hightower as manager of
ZeoLogix, Buzzeo’s rules-driven,
CORBA-based business informa-
tion tool.

A self-described C++ bigot
(“Programming
Languages for the
JVM,” Java Devel-
oper’s Journal, Vol.
5, issue 4), High-
tower learned,
albeit reluc-
tantly at first,
that Java
improved his
development

Wintertree
www.wintertree-

software.com
SYS-CON Media Expands
(Montvale, NJ) – SYS-CON
Media, Inc., publisher of Java
Developer's Journal and other
E-Business/Internet and Web-
related magazines such as XML-
Journal, has relocated its world-
wide corporate headquarters
from Pearl River, New York to
nearby Montvale, New Jersey.

SYS-CON now occupies
space in the 66,000 square-foot
building pictured at left, situat-
ed in prestigious northern
Bergen County. New York City is
just a short drive away via the
George Washington or Tappan
Zee bridges, and the new loca-
tion is convenient to Newark
International Airport via a local
shuttle service.

Prominent corporate neigh-
bors within a half-mile distance
include Sony, Mercedes and
Volvo (U.S. headquarters), A&P
and Grand Union (world head-
quarters), and other national and
international corporations.
www.sys-con.com

codemarketcodemarketcodemarketSM

SYS-CON
MEDIA

Java COM

158 JUNE 2000

North-
woods

www.nwoods.com

Visualize
www.visualizeinc.com

team’s productivity. Since that
epiphany, Hightower shifted his
focus to Java and prior to joining
Buzzeo was a senior software
engineer specializing in Java
architecture for Intel.
www.buzzeo.com

SilverStream Ships
jBroker 3.0
(Burlington, MA) – SilverStream
Software, Inc. has unveiled Silver-
Stream jBroker version 3.0, a Java-

based Object
Request Broker

(ORB) and services specifically
designed for building high-perfor-
mance, e-business applications
using the latest CORBA and J2EE
technologies.

jBroker 3.0 is fully CORBA 2.3
compliant, with important features
such as Java Portable Object
Adapter (POA) mapping, Remote
Method Invocation (RMI) over
Internet InterOrb Protocol (IIOP),
IIOP over Secure Sockets Layer
(IIOP/SSL), Interoperable Name
Service, and Objects by Value. A
free 45-day trial version of the jBro-

ker Server can be downloaded from
the SilverStream Web site.
www.silverstream.com

eXcelon Corporation and
Oracle Form Alliance
(Burlington, MA) – eXcelon Corpo-
ration and Oracle Corporation
have announced an agreement
through which the companies will
co-market a set of products that
will accelerate
the use of XML in Java application
development environments.

Under the terms of the agree-
ment, eXcelon and Oracle will
market eXcelon Stylus 2.0 in con-
junction with Oracle’s JDeveloper
3.1. When used together, the com-
panies’ products greatly enhance
the Java development and deploy-
ment environment for creating
enterprise-scale, high-perfor-
mance e-business applications.
www.exceloncorp.com

WebGain Acquires TOPLink
from The Object People
(Cupertino, CA) – WebGain, Inc.,
the independent entity formed by

Warburg Ventures and BEA Sys-
tems, Inc., has announced it will
acquire TOPLink, one of the
industry’s most advanced Java
object-to-relational mapping
products, from The Object People.

TOPLink is a key technology
in WebGain’s flagship product,
WebGain Studio Professional, an
end-to-end browser-to-database
development solution comprised
of leading technologies acquired
and licensed from Symantec
(VisualCafé), Macromedia

(Dreamweaver),
Tendril Software

(StructureBuilder) and Sun (Java).
TOPLink will continue to be

sold both separately and as part
of the WebGain Studio Profes-
sional product.
www.webgain.com

Bluestone Software Charts
Future of Total-e-Business
(Philadelphia, PA) – Bluestone
Software, Inc., has announced its
roadmap charting the future of
Total-e-Business (TeB), the compa-
ny’s comprehensive, standards-

based e-business platform. It iden-
tifies five TeB Platform editions as
well as the new Syndication Server,
all designed to address specific e-

business require-
ments by com-
bining the
required product

functionality with a solutions-ori-
ented understanding of customer
needs.
www.bluestone.com

Unify Acquires New Atlanta
(San Jose, CA) – Unify Corporation
has acquired privately held New
Atlanta Communica-
tions LLC, a premier
provider of Java
Servlet and JSP tech-
nology, for an undisclosed amount
of Unify stock. The acquisition
allows Unify to leverage New
Atlanta’s leading server-side Java
technology, extending Unify’s
momentum as a principal provider
of open, component-based e-com-
merce solutions.
www.newatlanta.com
www.eWaveCommerce.com

159JUNE 2000

Java COM

S Y S - C O N R A D I O

A:Q:
A:

Q:
A: Q:

A:

Q:
A:

Q:

Q:
A:

Q:
A:

JDJ: Tell us what KL Group has been
up to since we last spoke with you at
JavaOne in 1999.
Armstrong: Lots. We’ve been very busy
over the past year. Now, with the release
of version 2.8, JProbe is reinforcing its
leadership in the advanced-development
tools market by building on the server-
side advantage to include speed and ease
of use. In September we announced the
JProbe ServerSide Suite, which gives
developers powerful performance profil-
ing, memory debugging, code coverage
and thread analysis capabilities in one
integrated suite. Designed for server-
side Java development, JProbe Server-
Side has been a tremendous success
and a leader in the field. It’s the most
powerful and accurate tool of its kind.
Coming up this month we’re excited to
announce the release of JProbe 2.8,
introducing new features such as the
Garbage Monitor, Detail Meter and dra-
matic performance improvements, plus
there’s also a Quick Start Wizard to
guide less experienced developers
through the tuning process.

JDJ: How does that differ from
JProbe for the normal client site?
Armstrong: Much of it is very similar in
that you’re still analyzing code, but we’ve
actually introduced a server launch pad
that allows you to select from a list of our
supported application servers. Also, it’s an
extensible list that allows you to add your
own application server or servers that may
not be “in the box.” It basically reconfig-
ures JProbe so that it automatically starts
up the application server and makes it a
breeze to tune servlets, EJBs and other
server-side applications.

JDJ: One of the interesting things
you explained last time we talked
was how Java applications tend to
have memory leaks.
Armstrong: Yes. One of the misconcep-
tions about Java is that there are no such
things as memory leaks. We’ve actually
done a lot of work in classifying the kinds
of memory leaks that can occur in Java.
What it amounts to basically is memory
that’s never released by your application,
so there’s no way for the garbage collector
to know it’s actually garbage and thus
reclaim it as part of the heap. It has to do

with what we call loitering objects – objects
that are allocated and reference to them is
held on to far longer than it should be, so
that memory is never reclaimed.

Now the interesting thing about memo-
ry leaks in Java – and by the way, the
JProbe memory debugger is an excellent
way to find those loitering objects and those
memory leaks – is that typically, while less
common than they were in C or C++, when
they do occur they can be much more
severe. That’s because one object can hold
references to thousands of objects and
essentially slow down an application
tremendously or even cause it to crash.

JDJ: Other virtual engines are avail-
able besides the standard one from
Sun. Is any one in particular best at
handling, for example, the memory
leaks?

Armstrong: That’s a good question. Mem-
ory leaks are actually independent of the
implementation of the virtual machine.
There are some changes with the HotSpot
technology and how that handles garbage
collection, but the fact remains that if
there’s a loitering object, in Java terminolo-
gy, it’s going to be a loitering object no
matter what garbage collection scheme you
are using. It would be as if I said, “We just
got a better office cleaner, but you’ve still
got a messy desk there.” If you’ve got a
messy desk, it doesn’t matter how good
the office cleaner is, you’ve got a messy

desk. The same applies in Java applications:
if you’ve got memory leaks, you’ve got
memory leaks.

JDJ: What’s the procedure for using
JProbe? Should I wait until I finish my
application to start using one of my
analysis tools, or should it be some-
thing I evolve with you hand in hand?
Armstrong: It really boils down to your
philosophy about development....to how
important performance and reliability are
to the particular project you’re developing.
If you consider them to be low risk, not

important, and you consider features to
be more important than performance or
reliability, then maybe it would be okay to
leave it to the end of the project. But to
be honest with you, we have a lot of cus-
tomers who leave it that long, and no
matter how good JProbe is at showing
them where the problems are, it can be
very expensive to fix them after the fact.
Our most successful customers are those
who make this tool available to all of their
developers and do so much earlier in the
development process.

JDJ: So your advice is to be working
from an evolution point of view with
your project.
Armstrong: Yes.

JDJ: Is this at the class level – once
you’ve concluded a class and are
fairly happy with its implementation,
you then run JProbe with that class?
Armstrong: We recommend doing it on
a regular basis with your application and
there’s a right time to start doing it. You
know, I’m not going to say you need to
analyze every class you develop right from
the very start, but pick the time when you
want to start testing a set of classes or a
component of your application – that
might be a good time to start. Then again,
it depends on the scale of your application
and the importance of performance and
reliability.

Interview...
with ALAN ARMSTRONG

JPROBE PRODUCT MANAGER KL GROUP INC.

“Our most successful
customers are those who
make this tool available to all of their

developers and do so much
earlier in the development
process”

Java COM

160 JUNE 2000

161JUNE 2000

Java COM

XML DevCon 2000
www.xmldevcon2000.com

Java COM

162 JUNE 2000

XML DevCon 2000
www.xmldevcon2000.com

163JUNE 2000

Java COM

XML DevCon 2000
www.xmldevcon2000.com

Java COM

164 JUNE 2000

XML DevCon 2000
www.xmldevcon2000.com

165JUNE 2000

Java COM

XML DevCon 2000
www.xmldevcon2000.com

Java COM

166 JUNE 2000

XML DevCon 2000
www.xmldevcon2000.com

167JUNE 2000

Java COM

XML DevCon 2000
www.xmldevcon2000.com

Java COM

168 JUNE 2000

XML DevCon 2000
www.xmldevcon2000.com

169JUNE 2000

Java COM

XML DevCon 2000
www.xmldevcon2000.com

Java COM

170 JUNE 2000

XML DevCon 2000
www.xmldevcon2000.com

171JUNE 2000

Java COM

XML DevCon 2000
www.xmldevcon2000.com

Java COM

172 JUNE 2000

XML DevCon 2000
www.xmldevcon2000.com

173JUNE 2000

Java COM

XML DevCon 2000
www.xmldevcon2000.com

Java COM

174 JUNE 2000

XML DevCon 2000
www.xmldevcon2000.com

175JUNE 2000

Java COM

XML DevCon 2000
www.xmldevcon2000.com

Java COM

176 JUNE 2000

Career
Opportunities

177JUNE 2000

Java COM

Career
Opportunities

Java COM

178 JUNE 2000

Career
Opportunities

179JUNE 2000

Java COM

Career
Opportunities

Java COM

180 JUNE 2000

Career
Opportunities

181JUNE 2000

Java COM

Career
Opportunities

Java COM

182 JUNE 2000

Career
Opportunities

183JUNE 2000

Java COM

Career
Opportunities

Java COM

184 JUNE 2000

Career
Opportunities

185JUNE 2000

Java COM

Career
Opportunities

Java COM

186 JUNE 2000

Career
Opportunities

187JUNE 2000

Java COM

Career
Opportunities

Java COM

188 JUNE 2000

Career
Opportunities

189JUNE 2000

Java COM

Career
Opportunities

Java COM

190 JUNE 2000

Career
Opportunities

191JUNE 2000

Java COM

Career
Opportunities

Java COM

192 JUNE 2000

Career
Opportunities

193JUNE 2000

Java COM

Career
Opportunities

Java COM

194 JUNE 2000

Career
Opportunities

195JUNE 2000

Java COM

Career
Opportunities

Java COM

196 JUNE 2000

Career
Opportunities

197JUNE 2000

Java COM

Career
Opportunities

Java COM

198 JUNE 2000

Career
Opportunities

199JUNE 2000

Java COM

Career
Opportunities

Java COM

200 JUNE 2000

Career
Opportunities

201JUNE 2000

Java COM

Career
Opportunities

Java COM

202 JUNE 2000

Career
Opportunities

203JUNE 2000

Java COM

Career
Opportunities

Java COM

204 JUNE 2000

Career
Opportunities

205JUNE 2000

Java COM

Career
Opportunities

Java COM

206 JUNE 2000

Career
Opportunities

207JUNE 2000

Java COM

Career
Opportunities

Java COM

208 JUNE 2000

Career
Opportunities

209JUNE 2000

Java COM

Career
Opportunities

I M H O

T
he Internet is amazing. In just six short
years it has spawned thousands of new
businesses and generated billions of dol-
lars of wealth. Dot-com fever has cap-
tured the hearts of America’s technolo-
gists and entered the lives of many Amer-

icans. In the midst of all of this, it’s useful to look
at where we’ve come from, where we are now
and where we’re going.

Let’s go back to the beginning of the PC era. In the early 1980s for
the first time computers were small enough, cheap enough and sim-
ple enough to make their way to the desktops in homes and busi-
nesses. At home people used computers for personal finances, word
processing and games. At work people used computers to access the
business systems once directly accessible only to computer profes-
sionals. With these PCs and local area networks we saw the tremen-
dous growth of the client/server industry and the growth of technol-
ogy giants like Microsoft, Oracle, Sun and Intel. We also saw the
emergence of one dominant access platform, Wintel.

In 1994, with the invention of the Internet browser by Netscape, we
saw the birth of the Internet as we
know it today. The funny thing
about the emergence of the
Internet era is that fundamental-
ly it was built on the same tech-
nology as the PC and client/serv-
er era. Yes, we had computers
and networks that were bigger,
faster and cheaper, but the basic
technology was the same as we
saw in the client/server era. The
main difference is that the IT
industry became enlightened. With the Internet
we discovered that if we agreed on certain standard ways of doing
things, we could provide greater access to computer systems than ever
before and thus grow the industry to everyone’s benefit and profit. No
longer did we need to debate how to send a byte from one computer
to another. The debate was settled and now we send bytes using
TCP/IP. Thus we see the emergence of a small set of key Internet stan-
dards such as TCP/IP, HTTP, HTML, Java and SQL. More Internet stan-
dards will emerge, such as XML and CORBA, but they’ll emerge based
on general industry acceptance, not on the agenda of one or two major
industry players.

Another thing the Internet has brought us is the beginning of the
end of the Wintel dominance as the access platform. Because of the
industry-wide agreement on open standards, we’re discovering that
Wintel isn’t required to access the Internet. The best example of this
is the iMac. Here’s a technology that’s been around for over 10 years
and has seen resurgence just because Apple repackaged it as an
Internet access platform.

So where are we going now? Most experts will agree, I think, that
when history is finally written it will mark year 2000 as the beginning
of the Post-PC Era. And what will this era bring us? Computers will
penetrate every aspect of modern business and personal life. Post-
PC Era computers will be everywhere. We’ll come to depend on them
as we depend on electricity. Corporations will be able to extend their
reach to customers and employees everywhere and at any time.

Primitive single-function devices such as cell phones will become
sophisticated application platforms. Everything will be connected to
the Internet at one time or another. Data and information will be
available 24x7, anywhere, anytime. There will be many, many vari-
eties of access platforms and the Wintel dominance will fade into
history. Java will be the technology that will enable the deployment
of a single application on the plethora of Post-PC Era platforms.

The mobile Internet creates some new challenges. Connect time is
expensive and although it’s getting cheaper, there will always be a cost,
hidden or otherwise. Also, wireless connect time is the biggest drain of
battery power. People using Post-PC Era computers will want 24x7
access to their critical applications and won’t want to wait until cellular

connectivity just happens to be avail-
able, nor will they tolerate the inter-

ruption of critical activities as a
result of unreliable connectivity. This
drives the need for mobile wireless
applications to function while not
connected. Activities on mobile
wireless devices will generate data
that eventually must be synchro-

nized with back-end systems. This
drives the need for local storage of

data on mobile wireless devices. At
PointBase we are the providers of the

data management and data synchronization prod-
ucts that enable creation of mobile wireless applications that are avail-
able anytime, anywhere. PointBase is simple, small and 100% Pure Java.

The amazing growth of the Internet era has been fueled by a com-
puter on a desk that is attached to the wall. The assumption has been
that the center of productivity and creativity is around a stationary
desk in your home or office. What happens if you can get the same
level of productivity and creativity anywhere, anytime? This is when
the Internet will be unleashed and become really big. If you think it’s
big now, just wait and watch as the Post-PC Era unfolds.

AUTHOR BIO
Bruce Scott, president, CEO and founder of PointBase, is a leader in the area of enterprise and
embedded database architecture and product development. A cofounder of Oracle in 1977, Bruce
cofounded Gupta Technology in 1984, pioneering the notion of the small-footprint database server for
Intel-based platforms.

bruce.scott@pointbase.com

Java COM

210 JUNE 2000

When the Internet Gets Really Big. . .
Sooner or later everything will be connected

WRITTEN BY BRUCE SCOTT

211JUNE 2000

Java COM

SilverStream
www.silverstream.com

Java COM

212 JUNE 2000

KL Group Inc
www.klgroup.com/collect

